1
0
mirror of https://github.com/dolphin-emu/dolphin synced 2024-07-08 20:25:52 +00:00

Externals: Add rangeset.

This commit is contained in:
Admiral H. Curtiss 2020-05-05 00:17:06 +02:00
parent 5b52b3e9cb
commit fdab9783c7
8 changed files with 936 additions and 0 deletions

View File

@ -803,6 +803,8 @@ endif()
include_directories(Externals/picojson)
add_subdirectory(Externals/rangeset)
########################################
# Pre-build events: Define configuration variables and write SCM info header
#

View File

@ -56,6 +56,8 @@ Dolphin includes or links code of the following third-party software projects:
[LGPLv2.1+](http://cgit.freedesktop.org/pulseaudio/pulseaudio/tree/LICENSE)
- [Qt5](http://qt-project.org/):
[LGPLv3 and other licenses](http://doc.qt.io/qt-5/licensing.html)
- [rangeset](https://github.com/AdmiralCurtiss/rangeset)
[zlib license](https://github.com/AdmiralCurtiss/rangeset/blob/master/LICENSE)
- [SDL](https://www.libsdl.org/):
[zlib license](http://hg.libsdl.org/SDL/file/tip/COPYING.txt)
- [SFML](http://www.sfml-dev.org/):

4
Externals/rangeset/CMakeLists.txt vendored Normal file
View File

@ -0,0 +1,4 @@
add_library(RangeSet::RangeSet INTERFACE IMPORTED GLOBAL)
set_target_properties(RangeSet::RangeSet PROPERTIES
INTERFACE_INCLUDE_DIRECTORIES ${CMAKE_CURRENT_LIST_DIR}/include
)

17
Externals/rangeset/LICENSE vendored Normal file
View File

@ -0,0 +1,17 @@
Copyright (c) 2020 Admiral H. Curtiss
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.

View File

@ -0,0 +1,368 @@
#pragma once
#include <cassert>
#include <map>
namespace HyoutaUtilities {
template <typename T> class RangeSet {
private:
using MapT = std::map<T, T>;
public:
struct const_iterator {
public:
const T& from() const {
return It->first;
}
const T& to() const {
return It->second;
}
const_iterator& operator++() {
++It;
return *this;
}
const_iterator operator++(int) {
const_iterator old = *this;
++It;
return old;
}
const_iterator& operator--() {
--It;
return *this;
}
const_iterator operator--(int) {
const_iterator old = *this;
--It;
return old;
}
bool operator==(const const_iterator& rhs) const {
return this->It == rhs.It;
}
bool operator!=(const const_iterator& rhs) const {
return !operator==(rhs);
}
private:
typename MapT::const_iterator It;
const_iterator(typename MapT::const_iterator it) : It(it) {}
friend class RangeSet;
};
void insert(T from, T to) {
if (from >= to)
return;
// Start by finding the closest range.
// upper_bound() returns the closest range whose starting position
// is greater than 'from'.
auto bound = Map.upper_bound(from);
if (bound == Map.end()) {
// There is no range that starts greater than the given one.
// This means we have three options:
// - 1. No range exists yet, this is the first range.
if (Map.empty()) {
insert_range(from, to);
return;
}
// - 2. The given range does not overlap the last range.
--bound;
if (from > get_to(bound)) {
insert_range(from, to);
return;
}
// - 3. The given range does overlap the last range.
maybe_expand_to(bound, to);
return;
}
if (bound == Map.begin()) {
// The given range starts before any of the existing ones.
// We must insert this as a new range even if we potentially overlap
// an existing one as we can't modify a key in a std::map.
auto inserted = insert_range(from, to);
merge_from_iterator_to_value(inserted, bound, to);
return;
}
auto abound = bound--;
// 'bound' now points at the first range in the map that
// could possibly be affected.
// If 'bound' overlaps with given range, update bounds object.
if (get_to(bound) >= from) {
maybe_expand_to(bound, to);
auto inserted = bound;
++bound;
merge_from_iterator_to_value(inserted, bound, to);
return;
}
// 'bound' *doesn't* overlap with given range, check next range.
// If this range overlaps with given range,
if (get_from(abound) <= to) {
// insert new range
auto inserted = insert_range(from, to >= get_to(abound) ? to : get_to(abound));
// and delete overlaps
abound = erase_range(abound);
merge_from_iterator_to_value(inserted, abound, to);
return;
}
// Otherwise, if we come here, then this new range overlaps nothing
// and must be inserted as a new range.
insert_range(from, to);
}
void erase(T from, T to) {
if (from >= to)
return;
// Like insert(), we use upper_bound to find the closest range.
auto bound = Map.upper_bound(from);
if (bound == Map.end()) {
// There is no range that starts greater than the given one.
if (Map.empty()) {
// nothing to do
return;
}
--bound;
// 'bound' now points at the last range.
if (from >= get_to(bound)) {
// Given range is larger than any range that exists, nothing to do.
return;
}
if (to >= get_to(bound)) {
if (from == get_from(bound)) {
// Given range fully overlaps last range, erase it.
erase_range(bound);
return;
} else {
// Given range overlaps end of last range, reduce it.
reduce_to(bound, from);
return;
}
}
if (from == get_from(bound)) {
// Given range overlaps begin of last range, reduce it.
reduce_from(bound, to);
return;
} else {
// Given range overlaps middle of last range, bisect it.
bisect_range(bound, from, to);
return;
}
}
if (bound == Map.begin()) {
// If we found the first range that means 'from' is before any stored range.
// This means we can just erase from start until 'to' and be done with it.
erase_from_iterator_to_value(bound, to);
return;
}
// check previous range
auto abound = bound--;
if (from == get_from(bound)) {
// Similarly, if the previous range starts with the given one, just erase until 'to'.
erase_from_iterator_to_value(bound, to);
return;
}
// If we come here, the given range may or may not overlap part of the current 'bound'
// (but never the full range), which means we may need to update the end position of it,
// or possibly even split it into two.
if (from < get_to(bound)) {
if (to < get_to(bound)) {
// need to split in two
bisect_range(bound, from, to);
return;
} else {
// just update end
reduce_to(bound, from);
}
}
// and then just erase until 'to'
erase_from_iterator_to_value(abound, to);
return;
}
const_iterator erase(const_iterator it) {
return const_iterator(erase_range(it.It));
}
void clear() {
Map.clear();
}
bool contains(T value) const {
auto it = Map.upper_bound(value);
if (it == Map.begin())
return false;
--it;
return get_from(it) <= value && value < get_to(it);
}
size_t size() const {
return Map.size();
}
bool empty() const {
return Map.empty();
}
void swap(RangeSet<T>& other) {
Map.swap(other.Map);
}
const_iterator begin() const {
return const_iterator(Map.begin());
}
const_iterator end() const {
return const_iterator(Map.end());
}
const_iterator cbegin() const {
return const_iterator(Map.cbegin());
}
const_iterator cend() const {
return const_iterator(Map.cend());
}
bool operator==(const RangeSet<T>& other) const {
return this->Map == other.Map;
}
bool operator!=(const RangeSet<T>& other) const {
return !(*this == other);
}
private:
// Assumptions that can be made about the data:
// - Range are stored in the form [from, to[
// That is, the starting value is inclusive, and the end value is exclusive.
// - 'from' is the map key, 'to' is the map value
// - 'from' is always smaller than 'to'
// - Stored ranges never touch.
// - Stored ranges never overlap.
MapT Map;
T get_from(typename MapT::iterator it) const {
return it->first;
}
T get_to(typename MapT::iterator it) const {
return it->second;
}
T get_from(typename MapT::const_iterator it) const {
return it->first;
}
T get_to(typename MapT::const_iterator it) const {
return it->second;
}
typename MapT::iterator insert_range(T from, T to) {
return Map.emplace(from, to).first;
}
typename MapT::iterator erase_range(typename MapT::iterator it) {
return Map.erase(it);
}
typename MapT::const_iterator erase_range(typename MapT::const_iterator it) {
return Map.erase(it);
}
void bisect_range(typename MapT::iterator it, T from, T to) {
assert(get_from(it) < from);
assert(get_from(it) < to);
assert(get_to(it) > from);
assert(get_to(it) > to);
assert(from < to);
T itto = get_to(it);
reduce_to(it, from);
insert_range(to, itto);
}
typename MapT::iterator reduce_from(typename MapT::iterator it, T from) {
assert(get_from(it) < from);
T itto = get_to(it);
erase_range(it);
return insert_range(from, itto);
}
void maybe_expand_to(typename MapT::iterator it, T to) {
if (to <= get_to(it))
return;
expand_to(it, to);
}
void expand_to(typename MapT::iterator it, T to) {
assert(get_to(it) < to);
it->second = to;
}
void reduce_to(typename MapT::iterator it, T to) {
assert(get_to(it) > to);
it->second = to;
}
void merge_from_iterator_to_value(typename MapT::iterator inserted, typename MapT::iterator bound, T to) {
// Erase all ranges that overlap the inserted while updating the upper end.
while (bound != Map.end() && get_from(bound) <= to) {
maybe_expand_to(inserted, get_to(bound));
bound = erase_range(bound);
}
}
void erase_from_iterator_to_value(typename MapT::iterator bound, T to) {
// Assumption: Given bound starts at or after the 'from' value of the range to erase.
while (true) {
// Given range starts before stored range.
if (to <= get_from(bound)) {
// Range ends before this range too, nothing to do.
return;
}
if (to < get_to(bound)) {
// Range ends in the middle of current range, reduce current.
reduce_from(bound, to);
return;
}
if (to == get_to(bound)) {
// Range ends exactly with current range, erase current.
erase_range(bound);
return;
}
// Range ends later than current range.
// First erase current, then loop to check the range(s) after this one too.
bound = erase_range(bound);
if (bound == Map.end()) {
// Unless that was the last range, in which case there's nothing else to do.
return;
}
}
}
};
} // namespace HyoutaUtilities

View File

@ -0,0 +1,541 @@
#pragma once
#include <cassert>
#include <map>
#include <type_traits>
namespace HyoutaUtilities {
// Like RangeSet, but additionally stores a map of the ranges sorted by their size, for quickly finding the largest or
// smallest range.
template <typename T> class RangeSizeSet {
private:
// Key type used in the by-size multimap. Should be a type big enough to hold all possible distances between
// possible 'from' and 'to'.
// I'd actually love to just do
// using SizeT = typename std::conditional<std::is_pointer_v<T>,
// std::size_t, typename std::make_unsigned<T>::type>::type;
// but that's apparently not possible due to the std::make_unsigned<T>::type not existing for pointer types
// so we'll work around this...
template <typename U, bool IsPointer> struct GetSizeType { using S = typename std::make_unsigned<U>::type; };
template <typename U> struct GetSizeType<U, true> { using S = std::size_t; };
public:
using SizeT = typename GetSizeType<T, std::is_pointer_v<T>>::S;
private:
// Value type stored in the regular range map.
struct Value {
// End point of the range.
T To;
// Pointer to the same range in the by-size multimap.
typename std::multimap<SizeT, typename std::map<T, Value>::iterator, std::greater<SizeT>>::iterator SizeIt;
Value(T to) : To(to) {}
bool operator==(const Value& other) const {
return this->To == other.To;
}
bool operator!=(const Value& other) const {
return !operator==(other);
}
};
using MapT = std::map<T, Value>;
using SizeMapT = std::multimap<SizeT, typename MapT::iterator, std::greater<SizeT>>;
public:
struct by_size_const_iterator;
struct const_iterator {
public:
const T& from() const {
return It->first;
}
const T& to() const {
return It->second.To;
}
const_iterator& operator++() {
++It;
return *this;
}
const_iterator operator++(int) {
const_iterator old = *this;
++It;
return old;
}
const_iterator& operator--() {
--It;
return *this;
}
const_iterator operator--(int) {
const_iterator old = *this;
--It;
return old;
}
bool operator==(const const_iterator& rhs) const {
return this->It == rhs.It;
}
bool operator!=(const const_iterator& rhs) const {
return !operator==(rhs);
}
by_size_const_iterator to_size_iterator() {
return by_size_const_iterator(It->second.SizeIt);
}
private:
typename MapT::const_iterator It;
const_iterator(typename MapT::const_iterator it) : It(it) {}
friend class RangeSizeSet;
};
struct by_size_const_iterator {
public:
const T& from() const {
return It->second->first;
}
const T& to() const {
return It->second->second.To;
}
by_size_const_iterator& operator++() {
++It;
return *this;
}
by_size_const_iterator operator++(int) {
by_size_const_iterator old = *this;
++It;
return old;
}
by_size_const_iterator& operator--() {
--It;
return *this;
}
by_size_const_iterator operator--(int) {
by_size_const_iterator old = *this;
--It;
return old;
}
bool operator==(const by_size_const_iterator& rhs) const {
return this->It == rhs.It;
}
bool operator!=(const by_size_const_iterator& rhs) const {
return !operator==(rhs);
}
const_iterator to_range_iterator() {
return const_iterator(It->second);
}
private:
typename SizeMapT::const_iterator It;
by_size_const_iterator(typename SizeMapT::const_iterator it) : It(it) {}
friend class RangeSizeSet;
};
// We store iterators internally, so disallow copying.
RangeSizeSet() = default;
RangeSizeSet(const RangeSizeSet<T>&) = delete;
RangeSizeSet(RangeSizeSet<T>&&) = default;
RangeSizeSet<T>& operator=(const RangeSizeSet<T>&) = delete;
RangeSizeSet<T>& operator=(RangeSizeSet<T>&&) = default;
void insert(T from, T to) {
if (from >= to)
return;
// Start by finding the closest range.
// upper_bound() returns the closest range whose starting position
// is greater than 'from'.
auto bound = Map.upper_bound(from);
if (bound == Map.end()) {
// There is no range that starts greater than the given one.
// This means we have three options:
// - 1. No range exists yet, this is the first range.
if (Map.empty()) {
insert_range(from, to);
return;
}
// - 2. The given range does not overlap the last range.
--bound;
if (from > get_to(bound)) {
insert_range(from, to);
return;
}
// - 3. The given range does overlap the last range.
maybe_expand_to(bound, to);
return;
}
if (bound == Map.begin()) {
// The given range starts before any of the existing ones.
// We must insert this as a new range even if we potentially overlap
// an existing one as we can't modify a key in a std::map.
auto inserted = insert_range(from, to);
merge_from_iterator_to_value(inserted, bound, to);
return;
}
auto abound = bound--;
// 'bound' now points at the first range in the map that
// could possibly be affected.
// If 'bound' overlaps with given range, update bounds object.
if (get_to(bound) >= from) {
maybe_expand_to(bound, to);
auto inserted = bound;
++bound;
merge_from_iterator_to_value(inserted, bound, to);
return;
}
// 'bound' *doesn't* overlap with given range, check next range.
// If this range overlaps with given range,
if (get_from(abound) <= to) {
// insert new range
auto inserted = insert_range(from, to >= get_to(abound) ? to : get_to(abound));
// and delete overlaps
abound = erase_range(abound);
merge_from_iterator_to_value(inserted, abound, to);
return;
}
// Otherwise, if we come here, then this new range overlaps nothing
// and must be inserted as a new range.
insert_range(from, to);
}
void erase(T from, T to) {
if (from >= to)
return;
// Like insert(), we use upper_bound to find the closest range.
auto bound = Map.upper_bound(from);
if (bound == Map.end()) {
// There is no range that starts greater than the given one.
if (Map.empty()) {
// nothing to do
return;
}
--bound;
// 'bound' now points at the last range.
if (from >= get_to(bound)) {
// Given range is larger than any range that exists, nothing to do.
return;
}
if (to >= get_to(bound)) {
if (from == get_from(bound)) {
// Given range fully overlaps last range, erase it.
erase_range(bound);
return;
} else {
// Given range overlaps end of last range, reduce it.
reduce_to(bound, from);
return;
}
}
if (from == get_from(bound)) {
// Given range overlaps begin of last range, reduce it.
reduce_from(bound, to);
return;
} else {
// Given range overlaps middle of last range, bisect it.
bisect_range(bound, from, to);
return;
}
}
if (bound == Map.begin()) {
// If we found the first range that means 'from' is before any stored range.
// This means we can just erase from start until 'to' and be done with it.
erase_from_iterator_to_value(bound, to);
return;
}
// check previous range
auto abound = bound--;
if (from == get_from(bound)) {
// Similarly, if the previous range starts with the given one, just erase until 'to'.
erase_from_iterator_to_value(bound, to);
return;
}
// If we come here, the given range may or may not overlap part of the current 'bound'
// (but never the full range), which means we may need to update the end position of it,
// or possibly even split it into two.
if (from < get_to(bound)) {
if (to < get_to(bound)) {
// need to split in two
bisect_range(bound, from, to);
return;
} else {
// just update end
reduce_to(bound, from);
}
}
// and then just erase until 'to'
erase_from_iterator_to_value(abound, to);
return;
}
const_iterator erase(const_iterator it) {
return const_iterator(erase_range(it.It));
}
by_size_const_iterator erase(by_size_const_iterator it) {
return by_size_const_iterator(erase_range_by_size(it.It));
}
void clear() {
Map.clear();
Sizes.clear();
}
bool contains(T value) const {
auto it = Map.upper_bound(value);
if (it == Map.begin())
return false;
--it;
return get_from(it) <= value && value < get_to(it);
}
size_t size() const {
return Map.size();
}
bool empty() const {
return Map.empty();
}
size_t by_size_count(const SizeT& key) const {
return Sizes.count(key);
}
by_size_const_iterator by_size_find(const SizeT& key) const {
return Sizes.find(key);
}
std::pair<by_size_const_iterator, by_size_const_iterator> by_size_equal_range(const SizeT& key) const {
auto p = Sizes.equal_range(key);
return std::pair<by_size_const_iterator, by_size_const_iterator>(by_size_const_iterator(p.first),
by_size_const_iterator(p.second));
}
by_size_const_iterator by_size_lower_bound(const SizeT& key) const {
return Sizes.lower_bound(key);
}
by_size_const_iterator by_size_upper_bound(const SizeT& key) const {
return Sizes.upper_bound(key);
}
void swap(RangeSizeSet<T>& other) {
Map.swap(other.Map);
Sizes.swap(other.Sizes);
}
const_iterator begin() const {
return const_iterator(Map.begin());
}
const_iterator end() const {
return const_iterator(Map.end());
}
const_iterator cbegin() const {
return const_iterator(Map.cbegin());
}
const_iterator cend() const {
return const_iterator(Map.cend());
}
by_size_const_iterator by_size_begin() const {
return by_size_const_iterator(Sizes.begin());
}
by_size_const_iterator by_size_end() const {
return by_size_const_iterator(Sizes.end());
}
by_size_const_iterator by_size_cbegin() const {
return by_size_const_iterator(Sizes.cbegin());
}
by_size_const_iterator by_size_cend() const {
return by_size_const_iterator(Sizes.cend());
}
bool operator==(const RangeSizeSet<T>& other) const {
return this->Map == other.Map;
}
bool operator!=(const RangeSizeSet<T>& other) const {
return !(*this == other);
}
private:
static SizeT calc_size(T from, T to) {
if constexpr (std::is_pointer_v<T>) {
// For pointers we don't want pointer arithmetic here, else void* breaks.
static_assert(sizeof(T) <= sizeof(SizeT));
return reinterpret_cast<SizeT>(to) - reinterpret_cast<SizeT>(from);
} else {
return static_cast<SizeT>(to - from);
}
}
// Assumptions that can be made about the data:
// - Range are stored in the form [from, to[
// That is, the starting value is inclusive, and the end value is exclusive.
// - 'from' is the map key, 'to' is the map value
// - 'from' is always smaller than 'to'
// - Stored ranges never touch.
// - Stored ranges never overlap.
MapT Map;
// The by-size multimap.
// Key is the size of the range.
// Value is a pointer to the range in the regular range map.
// We use std::greater so that Sizes.begin() gives us the largest range.
SizeMapT Sizes;
T get_from(typename MapT::iterator it) const {
return it->first;
}
T get_to(typename MapT::iterator it) const {
return it->second.To;
}
T get_from(typename MapT::const_iterator it) const {
return it->first;
}
T get_to(typename MapT::const_iterator it) const {
return it->second.To;
}
typename MapT::iterator insert_range(T from, T to) {
auto m = Map.emplace(from, to).first;
m->second.SizeIt = Sizes.emplace(calc_size(from, to), m);
return m;
}
typename MapT::iterator erase_range(typename MapT::iterator it) {
Sizes.erase(it->second.SizeIt);
return Map.erase(it);
}
typename MapT::const_iterator erase_range(typename MapT::const_iterator it) {
Sizes.erase(it->second.SizeIt);
return Map.erase(it);
}
typename SizeMapT::const_iterator erase_range_by_size(typename SizeMapT::const_iterator it) {
Map.erase(it->second);
return Sizes.erase(it);
}
void bisect_range(typename MapT::iterator it, T from, T to) {
assert(get_from(it) < from);
assert(get_from(it) < to);
assert(get_to(it) > from);
assert(get_to(it) > to);
assert(from < to);
T itto = get_to(it);
reduce_to(it, from);
insert_range(to, itto);
}
typename MapT::iterator reduce_from(typename MapT::iterator it, T from) {
assert(get_from(it) < from);
T itto = get_to(it);
erase_range(it);
return insert_range(from, itto);
}
void maybe_expand_to(typename MapT::iterator it, T to) {
if (to <= get_to(it))
return;
expand_to(it, to);
}
void expand_to(typename MapT::iterator it, T to) {
assert(get_to(it) < to);
it->second.To = to;
Sizes.erase(it->second.SizeIt);
it->second.SizeIt = Sizes.emplace(calc_size(get_from(it), to), it);
}
void reduce_to(typename MapT::iterator it, T to) {
assert(get_to(it) > to);
it->second.To = to;
Sizes.erase(it->second.SizeIt);
it->second.SizeIt = Sizes.emplace(calc_size(get_from(it), to), it);
}
void merge_from_iterator_to_value(typename MapT::iterator inserted, typename MapT::iterator bound, T to) {
// Erase all ranges that overlap the inserted while updating the upper end.
while (bound != Map.end() && get_from(bound) <= to) {
maybe_expand_to(inserted, get_to(bound));
bound = erase_range(bound);
}
}
void erase_from_iterator_to_value(typename MapT::iterator bound, T to) {
// Assumption: Given bound starts at or after the 'from' value of the range to erase.
while (true) {
// Given range starts before stored range.
if (to <= get_from(bound)) {
// Range ends before this range too, nothing to do.
return;
}
if (to < get_to(bound)) {
// Range ends in the middle of current range, reduce current.
reduce_from(bound, to);
return;
}
if (to == get_to(bound)) {
// Range ends exactly with current range, erase current.
erase_range(bound);
return;
}
// Range ends later than current range.
// First erase current, then loop to check the range(s) after this one too.
bound = erase_range(bound);
if (bound == Map.end()) {
// Unless that was the last range, in which case there's nothing else to do.
return;
}
}
}
};
} // namespace HyoutaUtilities

View File

@ -554,6 +554,7 @@ PUBLIC
inputcommon
${MBEDTLS_LIBRARIES}
pugixml
RangeSet::RangeSet
sfml-network
sfml-system
videonull

View File

@ -45,6 +45,7 @@
<AdditionalIncludeDirectories>$(ExternalsDir)OpenAL\include;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
<AdditionalIncludeDirectories>$(ExternalsDir)picojson;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
<AdditionalIncludeDirectories>$(ExternalsDir)pugixml;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
<AdditionalIncludeDirectories>$(ExternalsDir)rangeset\include;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
<AdditionalIncludeDirectories>$(ExternalsDir)SFML\include;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
<AdditionalIncludeDirectories>$(ExternalsDir)soundtouch;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
<AdditionalIncludeDirectories>$(ExternalsDir)Vulkan\include;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>