git/unpack-trees.c
Kjetil Barvik c06ff4908b Record ns-timestamps if possible, but do not use it without USE_NSEC
Traditionally, the lack of USE_NSEC meant "do not record nor use the
nanosecond resolution part of the file timestamps".  To avoid problems on
filesystems that lose the ns part when the metadata is flushed to the disk
and then later read back in, disabling USE_NSEC has been a good idea in
general.

If you are on a filesystem without such an issue, it does not hurt to read
and store them in the cached stat data in the index entries even if your
git is compiled without USE_NSEC.  The index left with such a version of
git can be read by git compiled with USE_NSEC and it can make use of the
nanosecond part to optimize the check to see if the path on the filesystem
hsa been modified since we last looked at.

Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-03-07 20:25:16 -08:00

995 lines
24 KiB
C

#define NO_THE_INDEX_COMPATIBILITY_MACROS
#include "cache.h"
#include "dir.h"
#include "tree.h"
#include "tree-walk.h"
#include "cache-tree.h"
#include "unpack-trees.h"
#include "progress.h"
#include "refs.h"
/*
* Error messages expected by scripts out of plumbing commands such as
* read-tree. Non-scripted Porcelain is not required to use these messages
* and in fact are encouraged to reword them to better suit their particular
* situation better. See how "git checkout" replaces not_uptodate_file to
* explain why it does not allow switching between branches when you have
* local changes, for example.
*/
static struct unpack_trees_error_msgs unpack_plumbing_errors = {
/* would_overwrite */
"Entry '%s' would be overwritten by merge. Cannot merge.",
/* not_uptodate_file */
"Entry '%s' not uptodate. Cannot merge.",
/* not_uptodate_dir */
"Updating '%s' would lose untracked files in it",
/* would_lose_untracked */
"Untracked working tree file '%s' would be %s by merge.",
/* bind_overlap */
"Entry '%s' overlaps with '%s'. Cannot bind.",
};
#define ERRORMSG(o,fld) \
( ((o) && (o)->msgs.fld) \
? ((o)->msgs.fld) \
: (unpack_plumbing_errors.fld) )
static void add_entry(struct unpack_trees_options *o, struct cache_entry *ce,
unsigned int set, unsigned int clear)
{
unsigned int size = ce_size(ce);
struct cache_entry *new = xmalloc(size);
clear |= CE_HASHED | CE_UNHASHED;
memcpy(new, ce, size);
new->next = NULL;
new->ce_flags = (new->ce_flags & ~clear) | set;
add_index_entry(&o->result, new, ADD_CACHE_OK_TO_ADD|ADD_CACHE_OK_TO_REPLACE|ADD_CACHE_SKIP_DFCHECK);
}
/*
* Unlink the last component and schedule the leading directories for
* removal, such that empty directories get removed.
*/
static void unlink_entry(struct cache_entry *ce)
{
if (has_symlink_or_noent_leading_path(ce->name, ce_namelen(ce)))
return;
if (unlink(ce->name))
return;
schedule_dir_for_removal(ce->name, ce_namelen(ce));
}
static struct checkout state;
static int check_updates(struct unpack_trees_options *o)
{
unsigned cnt = 0, total = 0;
struct progress *progress = NULL;
struct index_state *index = &o->result;
int i;
int errs = 0;
if (o->update && o->verbose_update) {
for (total = cnt = 0; cnt < index->cache_nr; cnt++) {
struct cache_entry *ce = index->cache[cnt];
if (ce->ce_flags & (CE_UPDATE | CE_REMOVE))
total++;
}
progress = start_progress_delay("Checking out files",
total, 50, 1);
cnt = 0;
}
for (i = 0; i < index->cache_nr; i++) {
struct cache_entry *ce = index->cache[i];
if (ce->ce_flags & CE_REMOVE) {
display_progress(progress, ++cnt);
if (o->update)
unlink_entry(ce);
}
}
remove_marked_cache_entries(&o->result);
remove_scheduled_dirs();
for (i = 0; i < index->cache_nr; i++) {
struct cache_entry *ce = index->cache[i];
if (ce->ce_flags & CE_UPDATE) {
display_progress(progress, ++cnt);
ce->ce_flags &= ~CE_UPDATE;
if (o->update) {
errs |= checkout_entry(ce, &state, NULL);
}
}
}
stop_progress(&progress);
return errs != 0;
}
static inline int call_unpack_fn(struct cache_entry **src, struct unpack_trees_options *o)
{
int ret = o->fn(src, o);
if (ret > 0)
ret = 0;
return ret;
}
static int unpack_index_entry(struct cache_entry *ce, struct unpack_trees_options *o)
{
struct cache_entry *src[5] = { ce, };
o->pos++;
if (ce_stage(ce)) {
if (o->skip_unmerged) {
add_entry(o, ce, 0, 0);
return 0;
}
}
return call_unpack_fn(src, o);
}
int traverse_trees_recursive(int n, unsigned long dirmask, unsigned long df_conflicts, struct name_entry *names, struct traverse_info *info)
{
int i;
struct tree_desc t[MAX_UNPACK_TREES];
struct traverse_info newinfo;
struct name_entry *p;
p = names;
while (!p->mode)
p++;
newinfo = *info;
newinfo.prev = info;
newinfo.name = *p;
newinfo.pathlen += tree_entry_len(p->path, p->sha1) + 1;
newinfo.conflicts |= df_conflicts;
for (i = 0; i < n; i++, dirmask >>= 1) {
const unsigned char *sha1 = NULL;
if (dirmask & 1)
sha1 = names[i].sha1;
fill_tree_descriptor(t+i, sha1);
}
return traverse_trees(n, t, &newinfo);
}
/*
* Compare the traverse-path to the cache entry without actually
* having to generate the textual representation of the traverse
* path.
*
* NOTE! This *only* compares up to the size of the traverse path
* itself - the caller needs to do the final check for the cache
* entry having more data at the end!
*/
static int do_compare_entry(const struct cache_entry *ce, const struct traverse_info *info, const struct name_entry *n)
{
int len, pathlen, ce_len;
const char *ce_name;
if (info->prev) {
int cmp = do_compare_entry(ce, info->prev, &info->name);
if (cmp)
return cmp;
}
pathlen = info->pathlen;
ce_len = ce_namelen(ce);
/* If ce_len < pathlen then we must have previously hit "name == directory" entry */
if (ce_len < pathlen)
return -1;
ce_len -= pathlen;
ce_name = ce->name + pathlen;
len = tree_entry_len(n->path, n->sha1);
return df_name_compare(ce_name, ce_len, S_IFREG, n->path, len, n->mode);
}
static int compare_entry(const struct cache_entry *ce, const struct traverse_info *info, const struct name_entry *n)
{
int cmp = do_compare_entry(ce, info, n);
if (cmp)
return cmp;
/*
* Even if the beginning compared identically, the ce should
* compare as bigger than a directory leading up to it!
*/
return ce_namelen(ce) > traverse_path_len(info, n);
}
static struct cache_entry *create_ce_entry(const struct traverse_info *info, const struct name_entry *n, int stage)
{
int len = traverse_path_len(info, n);
struct cache_entry *ce = xcalloc(1, cache_entry_size(len));
ce->ce_mode = create_ce_mode(n->mode);
ce->ce_flags = create_ce_flags(len, stage);
hashcpy(ce->sha1, n->sha1);
make_traverse_path(ce->name, info, n);
return ce;
}
static int unpack_nondirectories(int n, unsigned long mask,
unsigned long dirmask,
struct cache_entry **src,
const struct name_entry *names,
const struct traverse_info *info)
{
int i;
struct unpack_trees_options *o = info->data;
unsigned long conflicts;
/* Do we have *only* directories? Nothing to do */
if (mask == dirmask && !src[0])
return 0;
conflicts = info->conflicts;
if (o->merge)
conflicts >>= 1;
conflicts |= dirmask;
/*
* Ok, we've filled in up to any potential index entry in src[0],
* now do the rest.
*/
for (i = 0; i < n; i++) {
int stage;
unsigned int bit = 1ul << i;
if (conflicts & bit) {
src[i + o->merge] = o->df_conflict_entry;
continue;
}
if (!(mask & bit))
continue;
if (!o->merge)
stage = 0;
else if (i + 1 < o->head_idx)
stage = 1;
else if (i + 1 > o->head_idx)
stage = 3;
else
stage = 2;
src[i + o->merge] = create_ce_entry(info, names + i, stage);
}
if (o->merge)
return call_unpack_fn(src, o);
n += o->merge;
for (i = 0; i < n; i++)
add_entry(o, src[i], 0, 0);
return 0;
}
static int unpack_callback(int n, unsigned long mask, unsigned long dirmask, struct name_entry *names, struct traverse_info *info)
{
struct cache_entry *src[MAX_UNPACK_TREES + 1] = { NULL, };
struct unpack_trees_options *o = info->data;
const struct name_entry *p = names;
/* Find first entry with a real name (we could use "mask" too) */
while (!p->mode)
p++;
/* Are we supposed to look at the index too? */
if (o->merge) {
while (o->pos < o->src_index->cache_nr) {
struct cache_entry *ce = o->src_index->cache[o->pos];
int cmp = compare_entry(ce, info, p);
if (cmp < 0) {
if (unpack_index_entry(ce, o) < 0)
return -1;
continue;
}
if (!cmp) {
o->pos++;
if (ce_stage(ce)) {
/*
* If we skip unmerged index entries, we'll skip this
* entry *and* the tree entries associated with it!
*/
if (o->skip_unmerged) {
add_entry(o, ce, 0, 0);
return mask;
}
}
src[0] = ce;
}
break;
}
}
if (unpack_nondirectories(n, mask, dirmask, src, names, info) < 0)
return -1;
/* Now handle any directories.. */
if (dirmask) {
unsigned long conflicts = mask & ~dirmask;
if (o->merge) {
conflicts <<= 1;
if (src[0])
conflicts |= 1;
}
if (traverse_trees_recursive(n, dirmask, conflicts,
names, info) < 0)
return -1;
return mask;
}
return mask;
}
static int unpack_failed(struct unpack_trees_options *o, const char *message)
{
discard_index(&o->result);
if (!o->gently) {
if (message)
return error("%s", message);
return -1;
}
return -1;
}
/*
* N-way merge "len" trees. Returns 0 on success, -1 on failure to manipulate the
* resulting index, -2 on failure to reflect the changes to the work tree.
*/
int unpack_trees(unsigned len, struct tree_desc *t, struct unpack_trees_options *o)
{
int ret;
static struct cache_entry *dfc;
if (len > MAX_UNPACK_TREES)
die("unpack_trees takes at most %d trees", MAX_UNPACK_TREES);
memset(&state, 0, sizeof(state));
state.base_dir = "";
state.force = 1;
state.quiet = 1;
state.refresh_cache = 1;
memset(&o->result, 0, sizeof(o->result));
o->result.initialized = 1;
if (o->src_index) {
o->result.timestamp.sec = o->src_index->timestamp.sec;
o->result.timestamp.nsec = o->src_index->timestamp.nsec;
}
o->merge_size = len;
if (!dfc)
dfc = xcalloc(1, cache_entry_size(0));
o->df_conflict_entry = dfc;
if (len) {
const char *prefix = o->prefix ? o->prefix : "";
struct traverse_info info;
setup_traverse_info(&info, prefix);
info.fn = unpack_callback;
info.data = o;
if (traverse_trees(len, t, &info) < 0)
return unpack_failed(o, NULL);
}
/* Any left-over entries in the index? */
if (o->merge) {
while (o->pos < o->src_index->cache_nr) {
struct cache_entry *ce = o->src_index->cache[o->pos];
if (unpack_index_entry(ce, o) < 0)
return unpack_failed(o, NULL);
}
}
if (o->trivial_merges_only && o->nontrivial_merge)
return unpack_failed(o, "Merge requires file-level merging");
o->src_index = NULL;
ret = check_updates(o) ? (-2) : 0;
if (o->dst_index)
*o->dst_index = o->result;
return ret;
}
/* Here come the merge functions */
static int reject_merge(struct cache_entry *ce, struct unpack_trees_options *o)
{
return error(ERRORMSG(o, would_overwrite), ce->name);
}
static int same(struct cache_entry *a, struct cache_entry *b)
{
if (!!a != !!b)
return 0;
if (!a && !b)
return 1;
return a->ce_mode == b->ce_mode &&
!hashcmp(a->sha1, b->sha1);
}
/*
* When a CE gets turned into an unmerged entry, we
* want it to be up-to-date
*/
static int verify_uptodate(struct cache_entry *ce,
struct unpack_trees_options *o)
{
struct stat st;
if (o->index_only || o->reset || ce_uptodate(ce))
return 0;
if (!lstat(ce->name, &st)) {
unsigned changed = ie_match_stat(o->src_index, ce, &st, CE_MATCH_IGNORE_VALID);
if (!changed)
return 0;
/*
* NEEDSWORK: the current default policy is to allow
* submodule to be out of sync wrt the supermodule
* index. This needs to be tightened later for
* submodules that are marked to be automatically
* checked out.
*/
if (S_ISGITLINK(ce->ce_mode))
return 0;
errno = 0;
}
if (errno == ENOENT)
return 0;
return o->gently ? -1 :
error(ERRORMSG(o, not_uptodate_file), ce->name);
}
static void invalidate_ce_path(struct cache_entry *ce, struct unpack_trees_options *o)
{
if (ce)
cache_tree_invalidate_path(o->src_index->cache_tree, ce->name);
}
/*
* Check that checking out ce->sha1 in subdir ce->name is not
* going to overwrite any working files.
*
* Currently, git does not checkout subprojects during a superproject
* checkout, so it is not going to overwrite anything.
*/
static int verify_clean_submodule(struct cache_entry *ce, const char *action,
struct unpack_trees_options *o)
{
return 0;
}
static int verify_clean_subdirectory(struct cache_entry *ce, const char *action,
struct unpack_trees_options *o)
{
/*
* we are about to extract "ce->name"; we would not want to lose
* anything in the existing directory there.
*/
int namelen;
int i;
struct dir_struct d;
char *pathbuf;
int cnt = 0;
unsigned char sha1[20];
if (S_ISGITLINK(ce->ce_mode) &&
resolve_gitlink_ref(ce->name, "HEAD", sha1) == 0) {
/* If we are not going to update the submodule, then
* we don't care.
*/
if (!hashcmp(sha1, ce->sha1))
return 0;
return verify_clean_submodule(ce, action, o);
}
/*
* First let's make sure we do not have a local modification
* in that directory.
*/
namelen = strlen(ce->name);
for (i = o->pos; i < o->src_index->cache_nr; i++) {
struct cache_entry *ce2 = o->src_index->cache[i];
int len = ce_namelen(ce2);
if (len < namelen ||
strncmp(ce->name, ce2->name, namelen) ||
ce2->name[namelen] != '/')
break;
/*
* ce2->name is an entry in the subdirectory.
*/
if (!ce_stage(ce2)) {
if (verify_uptodate(ce2, o))
return -1;
add_entry(o, ce2, CE_REMOVE, 0);
}
cnt++;
}
/*
* Then we need to make sure that we do not lose a locally
* present file that is not ignored.
*/
pathbuf = xmalloc(namelen + 2);
memcpy(pathbuf, ce->name, namelen);
strcpy(pathbuf+namelen, "/");
memset(&d, 0, sizeof(d));
if (o->dir)
d.exclude_per_dir = o->dir->exclude_per_dir;
i = read_directory(&d, ce->name, pathbuf, namelen+1, NULL);
if (i)
return o->gently ? -1 :
error(ERRORMSG(o, not_uptodate_dir), ce->name);
free(pathbuf);
return cnt;
}
/*
* This gets called when there was no index entry for the tree entry 'dst',
* but we found a file in the working tree that 'lstat()' said was fine,
* and we're on a case-insensitive filesystem.
*
* See if we can find a case-insensitive match in the index that also
* matches the stat information, and assume it's that other file!
*/
static int icase_exists(struct unpack_trees_options *o, struct cache_entry *dst, struct stat *st)
{
struct cache_entry *src;
src = index_name_exists(o->src_index, dst->name, ce_namelen(dst), 1);
return src && !ie_match_stat(o->src_index, src, st, CE_MATCH_IGNORE_VALID);
}
/*
* We do not want to remove or overwrite a working tree file that
* is not tracked, unless it is ignored.
*/
static int verify_absent(struct cache_entry *ce, const char *action,
struct unpack_trees_options *o)
{
struct stat st;
if (o->index_only || o->reset || !o->update)
return 0;
if (has_symlink_or_noent_leading_path(ce->name, ce_namelen(ce)))
return 0;
if (!lstat(ce->name, &st)) {
int ret;
int dtype = ce_to_dtype(ce);
struct cache_entry *result;
/*
* It may be that the 'lstat()' succeeded even though
* target 'ce' was absent, because there is an old
* entry that is different only in case..
*
* Ignore that lstat() if it matches.
*/
if (ignore_case && icase_exists(o, ce, &st))
return 0;
if (o->dir && excluded(o->dir, ce->name, &dtype))
/*
* ce->name is explicitly excluded, so it is Ok to
* overwrite it.
*/
return 0;
if (S_ISDIR(st.st_mode)) {
/*
* We are checking out path "foo" and
* found "foo/." in the working tree.
* This is tricky -- if we have modified
* files that are in "foo/" we would lose
* it.
*/
ret = verify_clean_subdirectory(ce, action, o);
if (ret < 0)
return ret;
/*
* If this removed entries from the index,
* what that means is:
*
* (1) the caller unpack_callback() saw path/foo
* in the index, and it has not removed it because
* it thinks it is handling 'path' as blob with
* D/F conflict;
* (2) we will return "ok, we placed a merged entry
* in the index" which would cause o->pos to be
* incremented by one;
* (3) however, original o->pos now has 'path/foo'
* marked with "to be removed".
*
* We need to increment it by the number of
* deleted entries here.
*/
o->pos += ret;
return 0;
}
/*
* The previous round may already have decided to
* delete this path, which is in a subdirectory that
* is being replaced with a blob.
*/
result = index_name_exists(&o->result, ce->name, ce_namelen(ce), 0);
if (result) {
if (result->ce_flags & CE_REMOVE)
return 0;
}
return o->gently ? -1 :
error(ERRORMSG(o, would_lose_untracked), ce->name, action);
}
return 0;
}
static int merged_entry(struct cache_entry *merge, struct cache_entry *old,
struct unpack_trees_options *o)
{
int update = CE_UPDATE;
if (old) {
/*
* See if we can re-use the old CE directly?
* That way we get the uptodate stat info.
*
* This also removes the UPDATE flag on a match; otherwise
* we will end up overwriting local changes in the work tree.
*/
if (same(old, merge)) {
copy_cache_entry(merge, old);
update = 0;
} else {
if (verify_uptodate(old, o))
return -1;
invalidate_ce_path(old, o);
}
}
else {
if (verify_absent(merge, "overwritten", o))
return -1;
invalidate_ce_path(merge, o);
}
add_entry(o, merge, update, CE_STAGEMASK);
return 1;
}
static int deleted_entry(struct cache_entry *ce, struct cache_entry *old,
struct unpack_trees_options *o)
{
/* Did it exist in the index? */
if (!old) {
if (verify_absent(ce, "removed", o))
return -1;
return 0;
}
if (verify_uptodate(old, o))
return -1;
add_entry(o, ce, CE_REMOVE, 0);
invalidate_ce_path(ce, o);
return 1;
}
static int keep_entry(struct cache_entry *ce, struct unpack_trees_options *o)
{
add_entry(o, ce, 0, 0);
return 1;
}
#if DBRT_DEBUG
static void show_stage_entry(FILE *o,
const char *label, const struct cache_entry *ce)
{
if (!ce)
fprintf(o, "%s (missing)\n", label);
else
fprintf(o, "%s%06o %s %d\t%s\n",
label,
ce->ce_mode,
sha1_to_hex(ce->sha1),
ce_stage(ce),
ce->name);
}
#endif
int threeway_merge(struct cache_entry **stages, struct unpack_trees_options *o)
{
struct cache_entry *index;
struct cache_entry *head;
struct cache_entry *remote = stages[o->head_idx + 1];
int count;
int head_match = 0;
int remote_match = 0;
int df_conflict_head = 0;
int df_conflict_remote = 0;
int any_anc_missing = 0;
int no_anc_exists = 1;
int i;
for (i = 1; i < o->head_idx; i++) {
if (!stages[i] || stages[i] == o->df_conflict_entry)
any_anc_missing = 1;
else
no_anc_exists = 0;
}
index = stages[0];
head = stages[o->head_idx];
if (head == o->df_conflict_entry) {
df_conflict_head = 1;
head = NULL;
}
if (remote == o->df_conflict_entry) {
df_conflict_remote = 1;
remote = NULL;
}
/* First, if there's a #16 situation, note that to prevent #13
* and #14.
*/
if (!same(remote, head)) {
for (i = 1; i < o->head_idx; i++) {
if (same(stages[i], head)) {
head_match = i;
}
if (same(stages[i], remote)) {
remote_match = i;
}
}
}
/* We start with cases where the index is allowed to match
* something other than the head: #14(ALT) and #2ALT, where it
* is permitted to match the result instead.
*/
/* #14, #14ALT, #2ALT */
if (remote && !df_conflict_head && head_match && !remote_match) {
if (index && !same(index, remote) && !same(index, head))
return o->gently ? -1 : reject_merge(index, o);
return merged_entry(remote, index, o);
}
/*
* If we have an entry in the index cache, then we want to
* make sure that it matches head.
*/
if (index && !same(index, head))
return o->gently ? -1 : reject_merge(index, o);
if (head) {
/* #5ALT, #15 */
if (same(head, remote))
return merged_entry(head, index, o);
/* #13, #3ALT */
if (!df_conflict_remote && remote_match && !head_match)
return merged_entry(head, index, o);
}
/* #1 */
if (!head && !remote && any_anc_missing)
return 0;
/* Under the new "aggressive" rule, we resolve mostly trivial
* cases that we historically had git-merge-one-file resolve.
*/
if (o->aggressive) {
int head_deleted = !head && !df_conflict_head;
int remote_deleted = !remote && !df_conflict_remote;
struct cache_entry *ce = NULL;
if (index)
ce = index;
else if (head)
ce = head;
else if (remote)
ce = remote;
else {
for (i = 1; i < o->head_idx; i++) {
if (stages[i] && stages[i] != o->df_conflict_entry) {
ce = stages[i];
break;
}
}
}
/*
* Deleted in both.
* Deleted in one and unchanged in the other.
*/
if ((head_deleted && remote_deleted) ||
(head_deleted && remote && remote_match) ||
(remote_deleted && head && head_match)) {
if (index)
return deleted_entry(index, index, o);
if (ce && !head_deleted) {
if (verify_absent(ce, "removed", o))
return -1;
}
return 0;
}
/*
* Added in both, identically.
*/
if (no_anc_exists && head && remote && same(head, remote))
return merged_entry(head, index, o);
}
/* Below are "no merge" cases, which require that the index be
* up-to-date to avoid the files getting overwritten with
* conflict resolution files.
*/
if (index) {
if (verify_uptodate(index, o))
return -1;
}
o->nontrivial_merge = 1;
/* #2, #3, #4, #6, #7, #9, #10, #11. */
count = 0;
if (!head_match || !remote_match) {
for (i = 1; i < o->head_idx; i++) {
if (stages[i] && stages[i] != o->df_conflict_entry) {
keep_entry(stages[i], o);
count++;
break;
}
}
}
#if DBRT_DEBUG
else {
fprintf(stderr, "read-tree: warning #16 detected\n");
show_stage_entry(stderr, "head ", stages[head_match]);
show_stage_entry(stderr, "remote ", stages[remote_match]);
}
#endif
if (head) { count += keep_entry(head, o); }
if (remote) { count += keep_entry(remote, o); }
return count;
}
/*
* Two-way merge.
*
* The rule is to "carry forward" what is in the index without losing
* information across a "fast forward", favoring a successful merge
* over a merge failure when it makes sense. For details of the
* "carry forward" rule, please see <Documentation/git-read-tree.txt>.
*
*/
int twoway_merge(struct cache_entry **src, struct unpack_trees_options *o)
{
struct cache_entry *current = src[0];
struct cache_entry *oldtree = src[1];
struct cache_entry *newtree = src[2];
if (o->merge_size != 2)
return error("Cannot do a twoway merge of %d trees",
o->merge_size);
if (oldtree == o->df_conflict_entry)
oldtree = NULL;
if (newtree == o->df_conflict_entry)
newtree = NULL;
if (current) {
if ((!oldtree && !newtree) || /* 4 and 5 */
(!oldtree && newtree &&
same(current, newtree)) || /* 6 and 7 */
(oldtree && newtree &&
same(oldtree, newtree)) || /* 14 and 15 */
(oldtree && newtree &&
!same(oldtree, newtree) && /* 18 and 19 */
same(current, newtree))) {
return keep_entry(current, o);
}
else if (oldtree && !newtree && same(current, oldtree)) {
/* 10 or 11 */
return deleted_entry(oldtree, current, o);
}
else if (oldtree && newtree &&
same(current, oldtree) && !same(current, newtree)) {
/* 20 or 21 */
return merged_entry(newtree, current, o);
}
else {
/* all other failures */
if (oldtree)
return o->gently ? -1 : reject_merge(oldtree, o);
if (current)
return o->gently ? -1 : reject_merge(current, o);
if (newtree)
return o->gently ? -1 : reject_merge(newtree, o);
return -1;
}
}
else if (newtree) {
if (oldtree && !o->initial_checkout) {
/*
* deletion of the path was staged;
*/
if (same(oldtree, newtree))
return 1;
return reject_merge(oldtree, o);
}
return merged_entry(newtree, current, o);
}
return deleted_entry(oldtree, current, o);
}
/*
* Bind merge.
*
* Keep the index entries at stage0, collapse stage1 but make sure
* stage0 does not have anything there.
*/
int bind_merge(struct cache_entry **src,
struct unpack_trees_options *o)
{
struct cache_entry *old = src[0];
struct cache_entry *a = src[1];
if (o->merge_size != 1)
return error("Cannot do a bind merge of %d trees\n",
o->merge_size);
if (a && old)
return o->gently ? -1 :
error(ERRORMSG(o, bind_overlap), a->name, old->name);
if (!a)
return keep_entry(old, o);
else
return merged_entry(a, NULL, o);
}
/*
* One-way merge.
*
* The rule is:
* - take the stat information from stage0, take the data from stage1
*/
int oneway_merge(struct cache_entry **src, struct unpack_trees_options *o)
{
struct cache_entry *old = src[0];
struct cache_entry *a = src[1];
if (o->merge_size != 1)
return error("Cannot do a oneway merge of %d trees",
o->merge_size);
if (!a)
return deleted_entry(old, old, o);
if (old && same(old, a)) {
int update = 0;
if (o->reset) {
struct stat st;
if (lstat(old->name, &st) ||
ie_match_stat(o->src_index, old, &st, CE_MATCH_IGNORE_VALID))
update |= CE_UPDATE;
}
add_entry(o, old, update, 0);
return 0;
}
return merged_entry(a, old, o);
}