mirror of
https://github.com/git/git
synced 2024-11-05 18:59:29 +00:00
48a81ed297
Fix for a long-standing bug that leaves the index file corrupt when it shrinks during a partial commit. * jk/reopen-tempfile-truncate: reopen_tempfile(): truncate opened file
265 lines
9.2 KiB
C
265 lines
9.2 KiB
C
#ifndef TEMPFILE_H
|
|
#define TEMPFILE_H
|
|
|
|
#include "list.h"
|
|
#include "strbuf.h"
|
|
|
|
/*
|
|
* Handle temporary files.
|
|
*
|
|
* The tempfile API allows temporary files to be created, deleted, and
|
|
* atomically renamed. Temporary files that are still active when the
|
|
* program ends are cleaned up automatically. Lockfiles (see
|
|
* "lockfile.h") are built on top of this API.
|
|
*
|
|
*
|
|
* Calling sequence
|
|
* ----------------
|
|
*
|
|
* The caller:
|
|
*
|
|
* * Attempts to create a temporary file by calling
|
|
* `create_tempfile()`. The resources used for the temporary file are
|
|
* managed by the tempfile API.
|
|
*
|
|
* * Writes new content to the file by either:
|
|
*
|
|
* * writing to the `tempfile->fd` file descriptor
|
|
*
|
|
* * calling `fdopen_tempfile()` to get a `FILE` pointer for the
|
|
* open file and writing to the file using stdio.
|
|
*
|
|
* Note that the file descriptor created by create_tempfile()
|
|
* is marked O_CLOEXEC, so the new contents must be written by
|
|
* the current process, not any spawned one.
|
|
*
|
|
* When finished writing, the caller can:
|
|
*
|
|
* * Close the file descriptor and remove the temporary file by
|
|
* calling `delete_tempfile()`.
|
|
*
|
|
* * Close the temporary file and rename it atomically to a specified
|
|
* filename by calling `rename_tempfile()`. This relinquishes
|
|
* control of the file.
|
|
*
|
|
* * Close the file descriptor without removing or renaming the
|
|
* temporary file by calling `close_tempfile_gently()`, and later call
|
|
* `delete_tempfile()` or `rename_tempfile()`.
|
|
*
|
|
* After the temporary file is renamed or deleted, the `tempfile`
|
|
* object is no longer valid and should not be reused.
|
|
*
|
|
* If the program exits before `rename_tempfile()` or
|
|
* `delete_tempfile()` is called, an `atexit(3)` handler will close
|
|
* and remove the temporary file.
|
|
*
|
|
* If you need to close the file descriptor yourself, do so by calling
|
|
* `close_tempfile_gently()`. You should never call `close(2)` or `fclose(3)`
|
|
* yourself, otherwise the `struct tempfile` structure would still
|
|
* think that the file descriptor needs to be closed, and a later
|
|
* cleanup would result in duplicate calls to `close(2)`. Worse yet,
|
|
* if you close and then later open another file descriptor for a
|
|
* completely different purpose, then the unrelated file descriptor
|
|
* might get closed.
|
|
*
|
|
*
|
|
* Error handling
|
|
* --------------
|
|
*
|
|
* `create_tempfile()` returns an allocated tempfile on success or NULL
|
|
* on failure. On errors, `errno` describes the reason for failure.
|
|
*
|
|
* `rename_tempfile()` and `close_tempfile_gently()` return 0 on success.
|
|
* On failure they set `errno` appropriately and return -1.
|
|
* `delete_tempfile()` and `rename` (but not `close`) do their best to
|
|
* delete the temporary file before returning.
|
|
*/
|
|
|
|
struct tempfile {
|
|
volatile struct volatile_list_head list;
|
|
volatile sig_atomic_t active;
|
|
volatile int fd;
|
|
FILE *volatile fp;
|
|
volatile pid_t owner;
|
|
struct strbuf filename;
|
|
};
|
|
|
|
/*
|
|
* Attempt to create a temporary file at the specified `path`. Return
|
|
* a tempfile (whose "fd" member can be used for writing to it), or
|
|
* NULL on error. It is an error if a file already exists at that path.
|
|
*/
|
|
extern struct tempfile *create_tempfile(const char *path);
|
|
|
|
/*
|
|
* Register an existing file as a tempfile, meaning that it will be
|
|
* deleted when the program exits. The tempfile is considered closed,
|
|
* but it can be worked with like any other closed tempfile (for
|
|
* example, it can be opened using reopen_tempfile()).
|
|
*/
|
|
extern struct tempfile *register_tempfile(const char *path);
|
|
|
|
|
|
/*
|
|
* mks_tempfile functions
|
|
*
|
|
* The following functions attempt to create and open temporary files
|
|
* with names derived automatically from a template, in the manner of
|
|
* mkstemps(), and arrange for them to be deleted if the program ends
|
|
* before they are deleted explicitly. There is a whole family of such
|
|
* functions, named according to the following pattern:
|
|
*
|
|
* x?mks_tempfile_t?s?m?()
|
|
*
|
|
* The optional letters have the following meanings:
|
|
*
|
|
* x - die if the temporary file cannot be created.
|
|
*
|
|
* t - create the temporary file under $TMPDIR (as opposed to
|
|
* relative to the current directory). When these variants are
|
|
* used, template should be the pattern for the filename alone,
|
|
* without a path.
|
|
*
|
|
* s - template includes a suffix that is suffixlen characters long.
|
|
*
|
|
* m - the temporary file should be created with the specified mode
|
|
* (otherwise, the mode is set to 0600).
|
|
*
|
|
* None of these functions modify template. If the caller wants to
|
|
* know the (absolute) path of the file that was created, it can be
|
|
* read from tempfile->filename.
|
|
*
|
|
* On success, the functions return a tempfile whose "fd" member is open
|
|
* for writing the temporary file. On errors, they return NULL and set
|
|
* errno appropriately (except for the "x" variants, which die() on
|
|
* errors).
|
|
*/
|
|
|
|
/* See "mks_tempfile functions" above. */
|
|
extern struct tempfile *mks_tempfile_sm(const char *filename_template,
|
|
int suffixlen, int mode);
|
|
|
|
/* See "mks_tempfile functions" above. */
|
|
static inline struct tempfile *mks_tempfile_s(const char *filename_template,
|
|
int suffixlen)
|
|
{
|
|
return mks_tempfile_sm(filename_template, suffixlen, 0600);
|
|
}
|
|
|
|
/* See "mks_tempfile functions" above. */
|
|
static inline struct tempfile *mks_tempfile_m(const char *filename_template, int mode)
|
|
{
|
|
return mks_tempfile_sm(filename_template, 0, mode);
|
|
}
|
|
|
|
/* See "mks_tempfile functions" above. */
|
|
static inline struct tempfile *mks_tempfile(const char *filename_template)
|
|
{
|
|
return mks_tempfile_sm(filename_template, 0, 0600);
|
|
}
|
|
|
|
/* See "mks_tempfile functions" above. */
|
|
extern struct tempfile *mks_tempfile_tsm(const char *filename_template,
|
|
int suffixlen, int mode);
|
|
|
|
/* See "mks_tempfile functions" above. */
|
|
static inline struct tempfile *mks_tempfile_ts(const char *filename_template,
|
|
int suffixlen)
|
|
{
|
|
return mks_tempfile_tsm(filename_template, suffixlen, 0600);
|
|
}
|
|
|
|
/* See "mks_tempfile functions" above. */
|
|
static inline struct tempfile *mks_tempfile_tm(const char *filename_template, int mode)
|
|
{
|
|
return mks_tempfile_tsm(filename_template, 0, mode);
|
|
}
|
|
|
|
/* See "mks_tempfile functions" above. */
|
|
static inline struct tempfile *mks_tempfile_t(const char *filename_template)
|
|
{
|
|
return mks_tempfile_tsm(filename_template, 0, 0600);
|
|
}
|
|
|
|
/* See "mks_tempfile functions" above. */
|
|
extern struct tempfile *xmks_tempfile_m(const char *filename_template, int mode);
|
|
|
|
/* See "mks_tempfile functions" above. */
|
|
static inline struct tempfile *xmks_tempfile(const char *filename_template)
|
|
{
|
|
return xmks_tempfile_m(filename_template, 0600);
|
|
}
|
|
|
|
/*
|
|
* Associate a stdio stream with the temporary file (which must still
|
|
* be open). Return `NULL` (*without* deleting the file) on error. The
|
|
* stream is closed automatically when `close_tempfile_gently()` is called or
|
|
* when the file is deleted or renamed.
|
|
*/
|
|
extern FILE *fdopen_tempfile(struct tempfile *tempfile, const char *mode);
|
|
|
|
static inline int is_tempfile_active(struct tempfile *tempfile)
|
|
{
|
|
return tempfile && tempfile->active;
|
|
}
|
|
|
|
/*
|
|
* Return the path of the lockfile. The return value is a pointer to a
|
|
* field within the lock_file object and should not be freed.
|
|
*/
|
|
extern const char *get_tempfile_path(struct tempfile *tempfile);
|
|
|
|
extern int get_tempfile_fd(struct tempfile *tempfile);
|
|
extern FILE *get_tempfile_fp(struct tempfile *tempfile);
|
|
|
|
/*
|
|
* If the temporary file is still open, close it (and the file pointer
|
|
* too, if it has been opened using `fdopen_tempfile()`) without
|
|
* deleting the file. Return 0 upon success. On failure to `close(2)`,
|
|
* return a negative value. Usually `delete_tempfile()` or `rename_tempfile()`
|
|
* should eventually be called regardless of whether `close_tempfile_gently()`
|
|
* succeeds.
|
|
*/
|
|
extern int close_tempfile_gently(struct tempfile *tempfile);
|
|
|
|
/*
|
|
* Re-open a temporary file that has been closed using
|
|
* `close_tempfile_gently()` but not yet deleted or renamed. This can be used
|
|
* to implement a sequence of operations like the following:
|
|
*
|
|
* * Create temporary file.
|
|
*
|
|
* * Write new contents to file, then `close_tempfile_gently()` to cause the
|
|
* contents to be written to disk.
|
|
*
|
|
* * Pass the name of the temporary file to another program to allow
|
|
* it (and nobody else) to inspect or even modify the file's
|
|
* contents.
|
|
*
|
|
* * `reopen_tempfile()` to reopen the temporary file, truncating the existing
|
|
* contents. Write out the new contents.
|
|
*
|
|
* * `rename_tempfile()` to move the file to its permanent location.
|
|
*/
|
|
extern int reopen_tempfile(struct tempfile *tempfile);
|
|
|
|
/*
|
|
* Close the file descriptor and/or file pointer and remove the
|
|
* temporary file associated with `tempfile`. It is a NOOP to call
|
|
* `delete_tempfile()` for a `tempfile` object that has already been
|
|
* deleted or renamed.
|
|
*/
|
|
extern void delete_tempfile(struct tempfile **tempfile_p);
|
|
|
|
/*
|
|
* Close the file descriptor and/or file pointer if they are still
|
|
* open, and atomically rename the temporary file to `path`. `path`
|
|
* must be on the same filesystem as the lock file. Return 0 on
|
|
* success. On failure, delete the temporary file and return -1, with
|
|
* `errno` set to the value from the failing call to `close(2)` or
|
|
* `rename(2)`. It is a bug to call `rename_tempfile()` for a
|
|
* `tempfile` object that is not currently active.
|
|
*/
|
|
extern int rename_tempfile(struct tempfile **tempfile_p, const char *path);
|
|
|
|
#endif /* TEMPFILE_H */
|