git/cache-tree.c
Derrick Stolee 6e773527b6 sparse-index: convert from full to sparse
If we have a full index, then we can convert it to a sparse index by
replacing directories outside of the sparse cone with sparse directory
entries. The convert_to_sparse() method does this, when the situation is
appropriate.

For now, we avoid converting the index to a sparse index if:

 1. the index is split.
 2. the index is already sparse.
 3. sparse-checkout is disabled.
 4. sparse-checkout does not use cone mode.

Finally, we currently limit the conversion to when the
GIT_TEST_SPARSE_INDEX environment variable is enabled. A mode using Git
config will be added in a later change.

The trickiest thing about this conversion is that we might not be able
to mark a directory as a sparse directory just because it is outside the
sparse cone. There might be unmerged files within that directory, so we
need to look for those. Also, if there is some strange reason why a file
is not marked with CE_SKIP_WORKTREE, then we should give up on
converting that directory. There is still hope that some of its
subdirectories might be able to convert to sparse, so we keep looking
deeper.

The conversion process is assisted by the cache-tree extension. This is
calculated from the full index if it does not already exist. We then
abandon the cache-tree as it no longer applies to the newly-sparse
index. Thus, this cache-tree will be recalculated in every
sparse-full-sparse round-trip until we integrate the cache-tree
extension with the sparse index.

Some Git commands use the index after writing it. For example, 'git add'
will update the index, then write it to disk, then read its entries to
report information. To keep the in-memory index in a full state after
writing, we re-expand it to a full one after the write. This is wasteful
for commands that only write the index and do not read from it again,
but that is only the case until we make those commands "sparse aware."

We can compare the behavior of the sparse-index in
t1092-sparse-checkout-compability.sh by using GIT_TEST_SPARSE_INDEX=1
when operating on the 'sparse-index' repo. We can also compare the two
sparse repos directly, such as comparing their indexes (when expanded to
full in the case of the 'sparse-index' repo). We also verify that the
index is actually populated with sparse directory entries.

The 'checkout and reset (mixed)' test is marked for failure when
comparing a sparse repo to a full repo, but we can compare the two
sparse-checkout cases directly to ensure that we are not changing the
behavior when using a sparse index.

Signed-off-by: Derrick Stolee <dstolee@microsoft.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-03-30 12:57:47 -07:00

871 lines
22 KiB
C

#include "cache.h"
#include "lockfile.h"
#include "tree.h"
#include "tree-walk.h"
#include "cache-tree.h"
#include "object-store.h"
#include "replace-object.h"
#include "promisor-remote.h"
#include "sparse-index.h"
#ifndef DEBUG_CACHE_TREE
#define DEBUG_CACHE_TREE 0
#endif
struct cache_tree *cache_tree(void)
{
struct cache_tree *it = xcalloc(1, sizeof(struct cache_tree));
it->entry_count = -1;
return it;
}
void cache_tree_free(struct cache_tree **it_p)
{
int i;
struct cache_tree *it = *it_p;
if (!it)
return;
for (i = 0; i < it->subtree_nr; i++)
if (it->down[i]) {
cache_tree_free(&it->down[i]->cache_tree);
free(it->down[i]);
}
free(it->down);
free(it);
*it_p = NULL;
}
static int subtree_name_cmp(const char *one, int onelen,
const char *two, int twolen)
{
if (onelen < twolen)
return -1;
if (twolen < onelen)
return 1;
return memcmp(one, two, onelen);
}
int cache_tree_subtree_pos(struct cache_tree *it, const char *path, int pathlen)
{
struct cache_tree_sub **down = it->down;
int lo, hi;
lo = 0;
hi = it->subtree_nr;
while (lo < hi) {
int mi = lo + (hi - lo) / 2;
struct cache_tree_sub *mdl = down[mi];
int cmp = subtree_name_cmp(path, pathlen,
mdl->name, mdl->namelen);
if (!cmp)
return mi;
if (cmp < 0)
hi = mi;
else
lo = mi + 1;
}
return -lo-1;
}
static struct cache_tree_sub *find_subtree(struct cache_tree *it,
const char *path,
int pathlen,
int create)
{
struct cache_tree_sub *down;
int pos = cache_tree_subtree_pos(it, path, pathlen);
if (0 <= pos)
return it->down[pos];
if (!create)
return NULL;
pos = -pos-1;
ALLOC_GROW(it->down, it->subtree_nr + 1, it->subtree_alloc);
it->subtree_nr++;
FLEX_ALLOC_MEM(down, name, path, pathlen);
down->cache_tree = NULL;
down->namelen = pathlen;
if (pos < it->subtree_nr)
MOVE_ARRAY(it->down + pos + 1, it->down + pos,
it->subtree_nr - pos - 1);
it->down[pos] = down;
return down;
}
struct cache_tree_sub *cache_tree_sub(struct cache_tree *it, const char *path)
{
int pathlen = strlen(path);
return find_subtree(it, path, pathlen, 1);
}
static int do_invalidate_path(struct cache_tree *it, const char *path)
{
/* a/b/c
* ==> invalidate self
* ==> find "a", have it invalidate "b/c"
* a
* ==> invalidate self
* ==> if "a" exists as a subtree, remove it.
*/
const char *slash;
int namelen;
struct cache_tree_sub *down;
#if DEBUG_CACHE_TREE
fprintf(stderr, "cache-tree invalidate <%s>\n", path);
#endif
if (!it)
return 0;
slash = strchrnul(path, '/');
namelen = slash - path;
it->entry_count = -1;
if (!*slash) {
int pos;
pos = cache_tree_subtree_pos(it, path, namelen);
if (0 <= pos) {
cache_tree_free(&it->down[pos]->cache_tree);
free(it->down[pos]);
/* 0 1 2 3 4 5
* ^ ^subtree_nr = 6
* pos
* move 4 and 5 up one place (2 entries)
* 2 = 6 - 3 - 1 = subtree_nr - pos - 1
*/
MOVE_ARRAY(it->down + pos, it->down + pos + 1,
it->subtree_nr - pos - 1);
it->subtree_nr--;
}
return 1;
}
down = find_subtree(it, path, namelen, 0);
if (down)
do_invalidate_path(down->cache_tree, slash + 1);
return 1;
}
void cache_tree_invalidate_path(struct index_state *istate, const char *path)
{
if (do_invalidate_path(istate->cache_tree, path))
istate->cache_changed |= CACHE_TREE_CHANGED;
}
static int verify_cache(struct index_state *istate, int flags)
{
unsigned i, funny;
int silent = flags & WRITE_TREE_SILENT;
/* Verify that the tree is merged */
funny = 0;
for (i = 0; i < istate->cache_nr; i++) {
const struct cache_entry *ce = istate->cache[i];
if (ce_stage(ce)) {
if (silent)
return -1;
if (10 < ++funny) {
fprintf(stderr, "...\n");
break;
}
fprintf(stderr, "%s: unmerged (%s)\n",
ce->name, oid_to_hex(&ce->oid));
}
}
if (funny)
return -1;
/* Also verify that the cache does not have path and path/file
* at the same time. At this point we know the cache has only
* stage 0 entries.
*/
funny = 0;
for (i = 0; i + 1 < istate->cache_nr; i++) {
/* path/file always comes after path because of the way
* the cache is sorted. Also path can appear only once,
* which means conflicting one would immediately follow.
*/
const struct cache_entry *this_ce = istate->cache[i];
const struct cache_entry *next_ce = istate->cache[i + 1];
const char *this_name = this_ce->name;
const char *next_name = next_ce->name;
int this_len = ce_namelen(this_ce);
if (this_len < ce_namelen(next_ce) &&
next_name[this_len] == '/' &&
strncmp(this_name, next_name, this_len) == 0) {
if (10 < ++funny) {
fprintf(stderr, "...\n");
break;
}
fprintf(stderr, "You have both %s and %s\n",
this_name, next_name);
}
}
if (funny)
return -1;
return 0;
}
static void discard_unused_subtrees(struct cache_tree *it)
{
struct cache_tree_sub **down = it->down;
int nr = it->subtree_nr;
int dst, src;
for (dst = src = 0; src < nr; src++) {
struct cache_tree_sub *s = down[src];
if (s->used)
down[dst++] = s;
else {
cache_tree_free(&s->cache_tree);
free(s);
it->subtree_nr--;
}
}
}
int cache_tree_fully_valid(struct cache_tree *it)
{
int i;
if (!it)
return 0;
if (it->entry_count < 0 || !has_object_file(&it->oid))
return 0;
for (i = 0; i < it->subtree_nr; i++) {
if (!cache_tree_fully_valid(it->down[i]->cache_tree))
return 0;
}
return 1;
}
static int update_one(struct cache_tree *it,
struct cache_entry **cache,
int entries,
const char *base,
int baselen,
int *skip_count,
int flags)
{
struct strbuf buffer;
int missing_ok = flags & WRITE_TREE_MISSING_OK;
int dryrun = flags & WRITE_TREE_DRY_RUN;
int repair = flags & WRITE_TREE_REPAIR;
int to_invalidate = 0;
int i;
assert(!(dryrun && repair));
*skip_count = 0;
if (0 <= it->entry_count && has_object_file(&it->oid))
return it->entry_count;
/*
* We first scan for subtrees and update them; we start by
* marking existing subtrees -- the ones that are unmarked
* should not be in the result.
*/
for (i = 0; i < it->subtree_nr; i++)
it->down[i]->used = 0;
/*
* Find the subtrees and update them.
*/
i = 0;
while (i < entries) {
const struct cache_entry *ce = cache[i];
struct cache_tree_sub *sub;
const char *path, *slash;
int pathlen, sublen, subcnt, subskip;
path = ce->name;
pathlen = ce_namelen(ce);
if (pathlen <= baselen || memcmp(base, path, baselen))
break; /* at the end of this level */
slash = strchr(path + baselen, '/');
if (!slash) {
i++;
continue;
}
/*
* a/bbb/c (base = a/, slash = /c)
* ==>
* path+baselen = bbb/c, sublen = 3
*/
sublen = slash - (path + baselen);
sub = find_subtree(it, path + baselen, sublen, 1);
if (!sub->cache_tree)
sub->cache_tree = cache_tree();
subcnt = update_one(sub->cache_tree,
cache + i, entries - i,
path,
baselen + sublen + 1,
&subskip,
flags);
if (subcnt < 0)
return subcnt;
if (!subcnt)
die("index cache-tree records empty sub-tree");
i += subcnt;
sub->count = subcnt; /* to be used in the next loop */
*skip_count += subskip;
sub->used = 1;
}
discard_unused_subtrees(it);
/*
* Then write out the tree object for this level.
*/
strbuf_init(&buffer, 8192);
i = 0;
while (i < entries) {
const struct cache_entry *ce = cache[i];
struct cache_tree_sub *sub = NULL;
const char *path, *slash;
int pathlen, entlen;
const struct object_id *oid;
unsigned mode;
int expected_missing = 0;
int contains_ita = 0;
int ce_missing_ok;
path = ce->name;
pathlen = ce_namelen(ce);
if (pathlen <= baselen || memcmp(base, path, baselen))
break; /* at the end of this level */
slash = strchr(path + baselen, '/');
if (slash) {
entlen = slash - (path + baselen);
sub = find_subtree(it, path + baselen, entlen, 0);
if (!sub)
die("cache-tree.c: '%.*s' in '%s' not found",
entlen, path + baselen, path);
i += sub->count;
oid = &sub->cache_tree->oid;
mode = S_IFDIR;
contains_ita = sub->cache_tree->entry_count < 0;
if (contains_ita) {
to_invalidate = 1;
expected_missing = 1;
}
}
else {
oid = &ce->oid;
mode = ce->ce_mode;
entlen = pathlen - baselen;
i++;
}
ce_missing_ok = mode == S_IFGITLINK || missing_ok ||
(has_promisor_remote() &&
ce_skip_worktree(ce));
if (is_null_oid(oid) ||
(!ce_missing_ok && !has_object_file(oid))) {
strbuf_release(&buffer);
if (expected_missing)
return -1;
return error("invalid object %06o %s for '%.*s'",
mode, oid_to_hex(oid), entlen+baselen, path);
}
/*
* CE_REMOVE entries are removed before the index is
* written to disk. Skip them to remain consistent
* with the future on-disk index.
*/
if (ce->ce_flags & CE_REMOVE) {
*skip_count = *skip_count + 1;
continue;
}
/*
* CE_INTENT_TO_ADD entries exist on on-disk index but
* they are not part of generated trees. Invalidate up
* to root to force cache-tree users to read elsewhere.
*/
if (!sub && ce_intent_to_add(ce)) {
to_invalidate = 1;
continue;
}
/*
* "sub" can be an empty tree if all subentries are i-t-a.
*/
if (contains_ita && is_empty_tree_oid(oid))
continue;
strbuf_grow(&buffer, entlen + 100);
strbuf_addf(&buffer, "%o %.*s%c", mode, entlen, path + baselen, '\0');
strbuf_add(&buffer, oid->hash, the_hash_algo->rawsz);
#if DEBUG_CACHE_TREE
fprintf(stderr, "cache-tree update-one %o %.*s\n",
mode, entlen, path + baselen);
#endif
}
if (repair) {
struct object_id oid;
hash_object_file(the_hash_algo, buffer.buf, buffer.len,
tree_type, &oid);
if (has_object_file_with_flags(&oid, OBJECT_INFO_SKIP_FETCH_OBJECT))
oidcpy(&it->oid, &oid);
else
to_invalidate = 1;
} else if (dryrun) {
hash_object_file(the_hash_algo, buffer.buf, buffer.len,
tree_type, &it->oid);
} else if (write_object_file(buffer.buf, buffer.len, tree_type,
&it->oid)) {
strbuf_release(&buffer);
return -1;
}
strbuf_release(&buffer);
it->entry_count = to_invalidate ? -1 : i - *skip_count;
#if DEBUG_CACHE_TREE
fprintf(stderr, "cache-tree update-one (%d ent, %d subtree) %s\n",
it->entry_count, it->subtree_nr,
oid_to_hex(&it->oid));
#endif
return i;
}
int cache_tree_update(struct index_state *istate, int flags)
{
int skip, i;
i = verify_cache(istate, flags);
if (i)
return i;
ensure_full_index(istate);
if (!istate->cache_tree)
istate->cache_tree = cache_tree();
trace_performance_enter();
trace2_region_enter("cache_tree", "update", the_repository);
i = update_one(istate->cache_tree, istate->cache, istate->cache_nr,
"", 0, &skip, flags);
trace2_region_leave("cache_tree", "update", the_repository);
trace_performance_leave("cache_tree_update");
if (i < 0)
return i;
istate->cache_changed |= CACHE_TREE_CHANGED;
return 0;
}
static void write_one(struct strbuf *buffer, struct cache_tree *it,
const char *path, int pathlen)
{
int i;
/* One "cache-tree" entry consists of the following:
* path (NUL terminated)
* entry_count, subtree_nr ("%d %d\n")
* tree-sha1 (missing if invalid)
* subtree_nr "cache-tree" entries for subtrees.
*/
strbuf_grow(buffer, pathlen + 100);
strbuf_add(buffer, path, pathlen);
strbuf_addf(buffer, "%c%d %d\n", 0, it->entry_count, it->subtree_nr);
#if DEBUG_CACHE_TREE
if (0 <= it->entry_count)
fprintf(stderr, "cache-tree <%.*s> (%d ent, %d subtree) %s\n",
pathlen, path, it->entry_count, it->subtree_nr,
oid_to_hex(&it->oid));
else
fprintf(stderr, "cache-tree <%.*s> (%d subtree) invalid\n",
pathlen, path, it->subtree_nr);
#endif
if (0 <= it->entry_count) {
strbuf_add(buffer, it->oid.hash, the_hash_algo->rawsz);
}
for (i = 0; i < it->subtree_nr; i++) {
struct cache_tree_sub *down = it->down[i];
if (i) {
struct cache_tree_sub *prev = it->down[i-1];
if (subtree_name_cmp(down->name, down->namelen,
prev->name, prev->namelen) <= 0)
die("fatal - unsorted cache subtree");
}
write_one(buffer, down->cache_tree, down->name, down->namelen);
}
}
void cache_tree_write(struct strbuf *sb, struct cache_tree *root)
{
trace2_region_enter("cache_tree", "write", the_repository);
write_one(sb, root, "", 0);
trace2_region_leave("cache_tree", "write", the_repository);
}
static struct cache_tree *read_one(const char **buffer, unsigned long *size_p)
{
const char *buf = *buffer;
unsigned long size = *size_p;
const char *cp;
char *ep;
struct cache_tree *it;
int i, subtree_nr;
const unsigned rawsz = the_hash_algo->rawsz;
it = NULL;
/* skip name, but make sure name exists */
while (size && *buf) {
size--;
buf++;
}
if (!size)
goto free_return;
buf++; size--;
it = cache_tree();
cp = buf;
it->entry_count = strtol(cp, &ep, 10);
if (cp == ep)
goto free_return;
cp = ep;
subtree_nr = strtol(cp, &ep, 10);
if (cp == ep)
goto free_return;
while (size && *buf && *buf != '\n') {
size--;
buf++;
}
if (!size)
goto free_return;
buf++; size--;
if (0 <= it->entry_count) {
if (size < rawsz)
goto free_return;
oidread(&it->oid, (const unsigned char *)buf);
buf += rawsz;
size -= rawsz;
}
#if DEBUG_CACHE_TREE
if (0 <= it->entry_count)
fprintf(stderr, "cache-tree <%s> (%d ent, %d subtree) %s\n",
*buffer, it->entry_count, subtree_nr,
oid_to_hex(&it->oid));
else
fprintf(stderr, "cache-tree <%s> (%d subtrees) invalid\n",
*buffer, subtree_nr);
#endif
/*
* Just a heuristic -- we do not add directories that often but
* we do not want to have to extend it immediately when we do,
* hence +2.
*/
it->subtree_alloc = subtree_nr + 2;
it->down = xcalloc(it->subtree_alloc, sizeof(struct cache_tree_sub *));
for (i = 0; i < subtree_nr; i++) {
/* read each subtree */
struct cache_tree *sub;
struct cache_tree_sub *subtree;
const char *name = buf;
sub = read_one(&buf, &size);
if (!sub)
goto free_return;
subtree = cache_tree_sub(it, name);
subtree->cache_tree = sub;
}
if (subtree_nr != it->subtree_nr)
die("cache-tree: internal error");
*buffer = buf;
*size_p = size;
return it;
free_return:
cache_tree_free(&it);
return NULL;
}
struct cache_tree *cache_tree_read(const char *buffer, unsigned long size)
{
struct cache_tree *result;
if (buffer[0])
return NULL; /* not the whole tree */
trace2_region_enter("cache_tree", "read", the_repository);
result = read_one(&buffer, &size);
trace2_region_leave("cache_tree", "read", the_repository);
return result;
}
static struct cache_tree *cache_tree_find(struct cache_tree *it, const char *path)
{
if (!it)
return NULL;
while (*path) {
const char *slash;
struct cache_tree_sub *sub;
slash = strchrnul(path, '/');
/*
* Between path and slash is the name of the subtree
* to look for.
*/
sub = find_subtree(it, path, slash - path, 0);
if (!sub)
return NULL;
it = sub->cache_tree;
path = slash;
while (*path == '/')
path++;
}
return it;
}
static int write_index_as_tree_internal(struct object_id *oid,
struct index_state *index_state,
int cache_tree_valid,
int flags,
const char *prefix)
{
if (flags & WRITE_TREE_IGNORE_CACHE_TREE) {
cache_tree_free(&index_state->cache_tree);
cache_tree_valid = 0;
}
if (!cache_tree_valid && cache_tree_update(index_state, flags) < 0)
return WRITE_TREE_UNMERGED_INDEX;
if (prefix) {
struct cache_tree *subtree;
subtree = cache_tree_find(index_state->cache_tree, prefix);
if (!subtree)
return WRITE_TREE_PREFIX_ERROR;
oidcpy(oid, &subtree->oid);
}
else
oidcpy(oid, &index_state->cache_tree->oid);
return 0;
}
struct tree* write_in_core_index_as_tree(struct repository *repo) {
struct object_id o;
int was_valid, ret;
struct index_state *index_state = repo->index;
was_valid = index_state->cache_tree &&
cache_tree_fully_valid(index_state->cache_tree);
ret = write_index_as_tree_internal(&o, index_state, was_valid, 0, NULL);
if (ret == WRITE_TREE_UNMERGED_INDEX) {
int i;
fprintf(stderr, "BUG: There are unmerged index entries:\n");
for (i = 0; i < index_state->cache_nr; i++) {
const struct cache_entry *ce = index_state->cache[i];
if (ce_stage(ce))
fprintf(stderr, "BUG: %d %.*s\n", ce_stage(ce),
(int)ce_namelen(ce), ce->name);
}
BUG("unmerged index entries when writing inmemory index");
}
return lookup_tree(repo, &index_state->cache_tree->oid);
}
int write_index_as_tree(struct object_id *oid, struct index_state *index_state, const char *index_path, int flags, const char *prefix)
{
int entries, was_valid;
struct lock_file lock_file = LOCK_INIT;
int ret;
hold_lock_file_for_update(&lock_file, index_path, LOCK_DIE_ON_ERROR);
entries = read_index_from(index_state, index_path, get_git_dir());
if (entries < 0) {
ret = WRITE_TREE_UNREADABLE_INDEX;
goto out;
}
was_valid = !(flags & WRITE_TREE_IGNORE_CACHE_TREE) &&
index_state->cache_tree &&
cache_tree_fully_valid(index_state->cache_tree);
ret = write_index_as_tree_internal(oid, index_state, was_valid, flags,
prefix);
if (!ret && !was_valid) {
write_locked_index(index_state, &lock_file, COMMIT_LOCK);
/* Not being able to write is fine -- we are only interested
* in updating the cache-tree part, and if the next caller
* ends up using the old index with unupdated cache-tree part
* it misses the work we did here, but that is just a
* performance penalty and not a big deal.
*/
}
out:
rollback_lock_file(&lock_file);
return ret;
}
static void prime_cache_tree_rec(struct repository *r,
struct cache_tree *it,
struct tree *tree)
{
struct tree_desc desc;
struct name_entry entry;
int cnt;
oidcpy(&it->oid, &tree->object.oid);
init_tree_desc(&desc, tree->buffer, tree->size);
cnt = 0;
while (tree_entry(&desc, &entry)) {
if (!S_ISDIR(entry.mode))
cnt++;
else {
struct cache_tree_sub *sub;
struct tree *subtree = lookup_tree(r, &entry.oid);
if (!subtree->object.parsed)
parse_tree(subtree);
sub = cache_tree_sub(it, entry.path);
sub->cache_tree = cache_tree();
prime_cache_tree_rec(r, sub->cache_tree, subtree);
cnt += sub->cache_tree->entry_count;
}
}
it->entry_count = cnt;
}
void prime_cache_tree(struct repository *r,
struct index_state *istate,
struct tree *tree)
{
trace2_region_enter("cache-tree", "prime_cache_tree", the_repository);
cache_tree_free(&istate->cache_tree);
istate->cache_tree = cache_tree();
prime_cache_tree_rec(r, istate->cache_tree, tree);
istate->cache_changed |= CACHE_TREE_CHANGED;
trace2_region_leave("cache-tree", "prime_cache_tree", the_repository);
}
/*
* find the cache_tree that corresponds to the current level without
* exploding the full path into textual form. The root of the
* cache tree is given as "root", and our current level is "info".
* (1) When at root level, info->prev is NULL, so it is "root" itself.
* (2) Otherwise, find the cache_tree that corresponds to one level
* above us, and find ourselves in there.
*/
static struct cache_tree *find_cache_tree_from_traversal(struct cache_tree *root,
struct traverse_info *info)
{
struct cache_tree *our_parent;
if (!info->prev)
return root;
our_parent = find_cache_tree_from_traversal(root, info->prev);
return cache_tree_find(our_parent, info->name);
}
int cache_tree_matches_traversal(struct cache_tree *root,
struct name_entry *ent,
struct traverse_info *info)
{
struct cache_tree *it;
it = find_cache_tree_from_traversal(root, info);
it = cache_tree_find(it, ent->path);
if (it && it->entry_count > 0 && oideq(&ent->oid, &it->oid))
return it->entry_count;
return 0;
}
static void verify_one(struct repository *r,
struct index_state *istate,
struct cache_tree *it,
struct strbuf *path)
{
int i, pos, len = path->len;
struct strbuf tree_buf = STRBUF_INIT;
struct object_id new_oid;
for (i = 0; i < it->subtree_nr; i++) {
strbuf_addf(path, "%s/", it->down[i]->name);
verify_one(r, istate, it->down[i]->cache_tree, path);
strbuf_setlen(path, len);
}
if (it->entry_count < 0 ||
/* no verification on tests (t7003) that replace trees */
lookup_replace_object(r, &it->oid) != &it->oid)
return;
if (path->len) {
pos = index_name_pos(istate, path->buf, path->len);
pos = -pos - 1;
} else {
pos = 0;
}
i = 0;
while (i < it->entry_count) {
struct cache_entry *ce = istate->cache[pos + i];
const char *slash;
struct cache_tree_sub *sub = NULL;
const struct object_id *oid;
const char *name;
unsigned mode;
int entlen;
if (ce->ce_flags & (CE_STAGEMASK | CE_INTENT_TO_ADD | CE_REMOVE))
BUG("%s with flags 0x%x should not be in cache-tree",
ce->name, ce->ce_flags);
name = ce->name + path->len;
slash = strchr(name, '/');
if (slash) {
entlen = slash - name;
sub = find_subtree(it, ce->name + path->len, entlen, 0);
if (!sub || sub->cache_tree->entry_count < 0)
BUG("bad subtree '%.*s'", entlen, name);
oid = &sub->cache_tree->oid;
mode = S_IFDIR;
i += sub->cache_tree->entry_count;
} else {
oid = &ce->oid;
mode = ce->ce_mode;
entlen = ce_namelen(ce) - path->len;
i++;
}
strbuf_addf(&tree_buf, "%o %.*s%c", mode, entlen, name, '\0');
strbuf_add(&tree_buf, oid->hash, r->hash_algo->rawsz);
}
hash_object_file(r->hash_algo, tree_buf.buf, tree_buf.len, tree_type,
&new_oid);
if (!oideq(&new_oid, &it->oid))
BUG("cache-tree for path %.*s does not match. "
"Expected %s got %s", len, path->buf,
oid_to_hex(&new_oid), oid_to_hex(&it->oid));
strbuf_setlen(path, len);
strbuf_release(&tree_buf);
}
void cache_tree_verify(struct repository *r, struct index_state *istate)
{
struct strbuf path = STRBUF_INIT;
if (!istate->cache_tree)
return;
verify_one(r, istate, istate->cache_tree, &path);
strbuf_release(&path);
}