git/contrib/coccinelle
SZEDER Gábor 138ef8068c cocci: remove 'unused.cocci'
When 'unused.cocci' was added in 4f40f6cb73 (cocci: add and apply a
rule to find "unused" strbufs, 2022-07-05) it found three unused
strbufs, and when it was generalized in the next commit it managed to
find an unused string_list as well.  That's four unused variables in
over 17 years, so apparently we rarely make this mistake.

Unfortunately, applying 'unused.cocci' is quite expensive, e.g. it
increases the from-scratch runtime of 'make coccicheck' by over 5:30
minutes or over 160%:

  $ make -s cocciclean
  $ time make -s coccicheck
      * new spatch flags

  real    8m56.201s
  user    0m0.420s
  sys     0m0.406s
  $ rm contrib/coccinelle/unused.cocci contrib/coccinelle/tests/unused.*
  $ make -s cocciclean
  $ time make -s coccicheck
      * new spatch flags

  real    3m23.893s
  user    0m0.228s
  sys     0m0.247s

That's a lot of runtime spent for not much in return, and arguably an
unused struct instance sneaking in is not that big of a deal to
justify the significantly increased runtime.

Remove 'unused.cocci', because we are not getting our CPU cycles'
worth.

Signed-off-by: SZEDER Gábor <szeder.dev@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2023-04-20 14:53:00 -07:00
..
tests cocci: remove 'unused.cocci' 2023-04-20 14:53:00 -07:00
.gitignore cocci: make "coccicheck" rule incremental 2022-11-02 21:22:16 -04:00
array.cocci use DUP_ARRAY 2023-01-09 13:28:36 +09:00
commit.cocci commit: move members graph_pos, generation to a slab 2020-06-17 14:37:30 -07:00
equals-null.cocci contrib/coccinnelle: add equals-null.cocci 2022-05-02 09:47:55 -07:00
flex_alloc.cocci cocci: FLEX_ALLOC_MEM to FLEX_ALLOC_STR 2019-04-04 18:22:30 +09:00
free.cocci cocci: add and apply free_commit_list() rules 2022-04-13 23:56:08 -07:00
hashmap.cocci cocci rules: remove <id>'s from rules that don't need them 2022-11-02 21:22:16 -04:00
index-compatibility.cocci cocci & cache.h: remove "USE_THE_INDEX_COMPATIBILITY_MACROS" 2023-02-10 11:38:40 -08:00
object_id.cocci cocci: retire is_null_sha1() rule 2022-06-07 15:53:24 -07:00
preincr.cocci cocci rules: remove <id>'s from rules that don't need them 2022-11-02 21:22:16 -04:00
qsort.cocci remove unnecessary check before QSORT 2016-09-29 15:42:18 -07:00
README spatchcache: add a ccache-alike for "spatch" 2022-11-02 21:22:16 -04:00
spatchcache spatchcache: add a ccache-alike for "spatch" 2022-11-02 21:22:16 -04:00
strbuf.cocci cocci rules: remove <id>'s from rules that don't need them 2022-11-02 21:22:16 -04:00
swap.cocci cocci rules: remove <id>'s from rules that don't need them 2022-11-02 21:22:16 -04:00
the_repository.cocci cocci: apply the "revision.h" part of "the_repository.pending" 2023-03-28 07:36:46 -07:00
xcalloc.cocci fix xcalloc() argument order 2021-03-08 09:45:04 -08:00
xopen.cocci index-pack: use xopen in init_thread 2021-09-10 14:22:50 -07:00
xstrdup_or_null.cocci cocci: drop bogus xstrdup_or_null() rule 2022-04-30 22:23:11 -07:00

This directory provides examples of Coccinelle (http://coccinelle.lip6.fr/)
semantic patches that might be useful to developers.

There are two types of semantic patches:

 * Using the semantic transformation to check for bad patterns in the code;
   The target 'make coccicheck' is designed to check for these patterns and
   it is expected that any resulting patch indicates a regression.
   The patches resulting from 'make coccicheck' are small and infrequent,
   so once they are found, they can be sent to the mailing list as per usual.

   Example for introducing new patterns:
   67947c34ae (convert "hashcmp() != 0" to "!hasheq()", 2018-08-28)
   b84c783882 (fsck: s/++i > 1/i++/, 2018-10-24)

   Example of fixes using this approach:
   248f66ed8e (run-command: use strbuf_addstr() for adding a string to
               a strbuf, 2018-03-25)
   f919ffebed (Use MOVE_ARRAY, 2018-01-22)

   These types of semantic patches are usually part of testing, c.f.
   0860a7641b (travis-ci: fail if Coccinelle static analysis found something
               to transform, 2018-07-23)

 * Using semantic transformations in large scale refactorings throughout
   the code base.

   When applying the semantic patch into a real patch, sending it to the
   mailing list in the usual way, such a patch would be expected to have a
   lot of textual and semantic conflicts as such large scale refactorings
   change function signatures that are used widely in the code base.
   A textual conflict would arise if surrounding code near any call of such
   function changes. A semantic conflict arises when other patch series in
   flight introduce calls to such functions.

   So to aid these large scale refactorings, semantic patches can be used.
   However we do not want to store them in the same place as the checks for
   bad patterns, as then automated builds would fail.
   That is why semantic patches 'contrib/coccinelle/*.pending.cocci'
   are ignored for checks, and can be applied using 'make coccicheck-pending'.

   This allows to expose plans of pending large scale refactorings without
   impacting the bad pattern checks.

Git-specific tips & things to know about how we run "spatch":

 * The "make coccicheck" will piggy-back on
   "COMPUTE_HEADER_DEPENDENCIES". If you've built a given object file
   the "coccicheck" target will consider its depednency to decide if
   it needs to re-run on the corresponding source file.

   This means that a "make coccicheck" will re-compile object files
   before running. This might be unexpected, but speeds up the run in
   the common case, as e.g. a change to "column.h" won't require all
   coccinelle rules to be re-run against "grep.c" (or another file
   that happens not to use "column.h").

   To disable this behavior use the "SPATCH_USE_O_DEPENDENCIES=NoThanks"
   flag.

 * To speed up our rules the "make coccicheck" target will by default
   concatenate all of the *.cocci files here into an "ALL.cocci", and
   apply it to each source file.

   This makes the run faster, as we don't need to run each rule
   against each source file. See the Makefile for further discussion,
   this behavior can be disabled with "SPATCH_CONCAT_COCCI=".

   But since they're concatenated any <id> in the <rulname> (e.g. "@
   my_name", v.s. anonymous "@@") needs to be unique across all our
   *.cocci files. You should only need to name rules if other rules
   depend on them (currently only one rule is named).

 * To speed up incremental runs even more use the "spatchcache" tool
   in this directory as your "SPATCH". It aimns to be a "ccache" for
   coccinelle, and piggy-backs on "COMPUTE_HEADER_DEPENDENCIES".

   It caches in Redis by default, see it source for a how-to.

   In one setup with a primed cache "make coccicheck" followed by a
   "make clean && make" takes around 10s to run, but 2m30s with the
   default of "SPATCH_CONCAT_COCCI=Y".

   With "SPATCH_CONCAT_COCCI=" the total runtime is around ~6m, sped
   up to ~1m with "spatchcache".

   Most of the 10s (or ~1m) being spent on re-running "spatch" on
   files we couldn't cache, as we didn't compile them (in contrib/*
   and compat/* mostly).

   The absolute times will differ for you, but the relative speedup
   from caching should be on that order.