Commit graph

4 commits

Author SHA1 Message Date
Eric Sunshine
db5875aa9f t0000-t3999: detect and signal failure within loop
Failures within `for` and `while` loops can go unnoticed if not detected
and signaled manually since the loop itself does not abort when a
contained command fails, nor will a failure necessarily be detected when
the loop finishes since the loop returns the exit code of the last
command it ran on the final iteration, which may not be the command
which failed. Therefore, detect and signal failures manually within
loops using the idiom `|| return 1` (or `|| exit 1` within subshells).

Signed-off-by: Eric Sunshine <sunshine@sunshineco.com>
Reviewed-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-12-13 10:29:48 -08:00
Patrick Steinhardt
21020430a4 p1400: use git-update-ref --stdin to test multiple transactions
In commit 0a0fbbe3ff (refs: remove lookup cache for
reference-transaction hook, 2020-08-25), a new benchmark was added to
p1400 which has the intention to exercise creation of multiple
transactions in a single process. As git-update-ref wasn't yet able to
create multiple transactions with a single run we instead used git-push.
As its non-atomic version creates a transaction per reference update,
this was the best approximation we could make at that point in time.

Now that `git-update-ref --stdin` supports creation of multiple
transactions, let's convert the benchmark to use that instead. It has
less overhead and it's also a lot clearer what the actual intention is.

Signed-off-by: Patrick Steinhardt <ps@pks.im>
Reviewed-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-11-16 13:44:01 -08:00
Patrick Steinhardt
0a0fbbe3ff refs: remove lookup cache for reference-transaction hook
When adding the reference-transaction hook, there were concerns about
the performance impact it may have on setups which do not make use of
the new hook at all. After all, it gets executed every time a reftx is
prepared, committed or aborted, which linearly scales with the number of
reference-transactions created per session. And as there are code paths
like `git push` which create a new transaction for each reference to be
updated, this may translate to calling `find_hook()` quite a lot.

To address this concern, a cache was added with the intention to not
repeatedly do negative hook lookups. Turns out this cache caused a
regression, which was fixed via e5256c82e5 (refs: fix interleaving hook
calls with reference-transaction hook, 2020-08-07). In the process of
discussing the fix, we realized that the cache doesn't really help even
in the negative-lookup case. While performance tests added to benchmark
this did show a slight improvement in the 1% range, this really doesn't
warrent having a cache. Furthermore, it's quite flaky, too. E.g. running
it twice in succession produces the following results:

Test                         master            pks-reftx-hook-remove-cache
--------------------------------------------------------------------------
1400.2: update-ref           2.79(2.16+0.74)   2.73(2.12+0.71) -2.2%
1400.3: update-ref --stdin   0.22(0.08+0.14)   0.21(0.08+0.12) -4.5%

Test                         master            pks-reftx-hook-remove-cache
--------------------------------------------------------------------------
1400.2: update-ref           2.70(2.09+0.72)   2.74(2.13+0.71) +1.5%
1400.3: update-ref --stdin   0.21(0.10+0.10)   0.21(0.08+0.13) +0.0%

One case notably absent from those benchmarks is a single executable
searching for the hook hundreds of times, which is exactly the case for
which the negative cache was added. p1400.2 will spawn a new update-ref
for each transaction and p1400.3 only has a single reference-transaction
for all reference updates. So this commit adds a third benchmark, which
performs an non-atomic push of a thousand references. This will create a
new reference transaction per reference. But even for this case, the
negative cache doesn't consistently improve performance:

Test                         master            pks-reftx-hook-remove-cache
--------------------------------------------------------------------------
1400.4: nonatomic push       6.63(6.50+0.13)   6.81(6.67+0.14) +2.7%
1400.4: nonatomic push       6.35(6.21+0.14)   6.39(6.23+0.16) +0.6%
1400.4: nonatomic push       6.43(6.31+0.13)   6.42(6.28+0.15) -0.2%

So let's just remove the cache altogether to simplify the code.

Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-08-25 15:34:42 -07:00
Patrick Steinhardt
6754159767 refs: implement reference transaction hook
The low-level reference transactions used to update references are
currently completely opaque to the user. While certainly desirable in
most usecases, there are some which might want to hook into the
transaction to observe all queued reference updates as well as observing
the abortion or commit of a prepared transaction.

One such usecase would be to have a set of replicas of a given Git
repository, where we perform Git operations on all of the repositories
at once and expect the outcome to be the same in all of them. While
there exist hooks already for a certain subset of Git commands that
could be used to implement a voting mechanism for this, many others
currently don't have any mechanism for this.

The above scenario is the motivation for the new "reference-transaction"
hook that reaches directly into Git's reference transaction mechanism.
The hook receives as parameter the current state the transaction was
moved to ("prepared", "committed" or "aborted") and gets via its
standard input all queued reference updates. While the exit code gets
ignored in the "committed" and "aborted" states, a non-zero exit code in
the "prepared" state will cause the transaction to be aborted
prematurely.

Given the usecase described above, a voting mechanism can now be
implemented via this hook: as soon as it gets called, it will take all
of stdin and use it to cast a vote to a central service. When all
replicas of the repository agree, the hook will exit with zero,
otherwise it will abort the transaction by returning non-zero. The most
important upside is that this will catch _all_ commands writing
references at once, allowing to implement strong consistency for
reference updates via a single mechanism.

In order to test the impact on the case where we don't have any
"reference-transaction" hook installed in the repository, this commit
introduce two new performance tests for git-update-refs(1). Run against
an empty repository, it produces the following results:

  Test                         origin/master     HEAD
  --------------------------------------------------------------------
  1400.2: update-ref           2.70(2.10+0.71)   2.71(2.10+0.73) +0.4%
  1400.3: update-ref --stdin   0.21(0.09+0.11)   0.21(0.07+0.14) +0.0%

The performance test p1400.2 creates, updates and deletes a branch a
thousand times, thus averaging runtime of git-update-refs over 3000
invocations. p1400.3 instead calls `git-update-refs --stdin` three times
and queues a thousand creations, updates and deletes respectively.

As expected, p1400.3 consistently shows no noticeable impact, as for
each batch of updates there's a single call to access(3P) for the
negative hook lookup. On the other hand, for p1400.2, one can see an
impact caused by this patchset. But doing five runs of the performance
tests where each one was run with GIT_PERF_REPEAT_COUNT=10, the overhead
ranged from -1.5% to +1.1%. These inconsistent performance numbers can
be explained by the overhead of spawning 3000 processes. This shows that
the overhead of assembling the hook path and executing access(3P) once
to check if it's there is mostly outweighed by the operating system's
overhead.

Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-06-19 10:46:13 -07:00