Commit graph

12 commits

Author SHA1 Message Date
Patrick Steinhardt
7b8abc4d8c reftable/record: use scratch buffer when decoding records
When decoding log records we need a temporary buffer to decode the
reflog entry's name, mail address and message. As this buffer is local
to the function we thus have to reallocate it for every single log
record which we're about to decode, which is inefficient.

Refactor the code such that callers need to pass in a scratch buffer,
which allows us to reuse it for multiple decodes. This reduces the
number of allocations when iterating through reflogs. Before:

    HEAP SUMMARY:
        in use at exit: 13,473 bytes in 122 blocks
      total heap usage: 2,068,487 allocs, 2,068,365 frees, 305,122,946 bytes allocated

After:

    HEAP SUMMARY:
        in use at exit: 13,473 bytes in 122 blocks
      total heap usage: 1,068,485 allocs, 1,068,363 frees, 281,122,886 bytes allocated

Note that this commit also drop some redundant calls to `strbuf_reset()`
right before calling `decode_string()`. The latter already knows to
reset the buffer, so there is no need for these.

Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2024-03-05 09:10:06 -08:00
Patrick Steinhardt
87ff723018 reftable/record: convert old and new object IDs to arrays
In 7af607c58d (reftable/record: store "val1" hashes as static arrays,
2024-01-03) and b31e3cc620 (reftable/record: store "val2" hashes as
static arrays, 2024-01-03) we have converted ref records to store their
object IDs in a static array. Convert log records to do the same so that
their old and new object IDs are arrays, too.

This change results in two allocations less per log record that we're
iterating over. Before:

    HEAP SUMMARY:
        in use at exit: 13,473 bytes in 122 blocks
      total heap usage: 8,068,495 allocs, 8,068,373 frees, 401,011,862 bytes allocated

After:

    HEAP SUMMARY:
        in use at exit: 13,473 bytes in 122 blocks
      total heap usage: 6,068,489 allocs, 6,068,367 frees, 361,011,822 bytes allocated

Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2024-03-05 09:10:06 -08:00
Patrick Steinhardt
daf4f43d0d reftable/record: decode keys in place
When reading a record from a block, we need to decode the record's key.
As reftable keys are prefix-compressed, meaning they reuse a prefix from
the preceding record's key, this is a bit more involved than just having
to copy the relevant bytes: we need to figure out the prefix and suffix
lengths, copy the prefix from the preceding record and finally copy the
suffix from the current record.

This is done by passing three buffers to `reftable_decode_key()`: one
buffer that holds the result, one buffer that holds the last key, and
one buffer that points to the current record. The final key is then
assembled by calling `strbuf_add()` twice to copy over the prefix and
suffix.

Performing two memory copies is inefficient though. And we can indeed do
better by decoding keys in place. Instead of providing two buffers, the
caller may only call a single buffer that is already pre-populated with
the last key. Like this, we only have to call `strbuf_setlen()` to trim
the record to its prefix and then `strbuf_add()` to add the suffix.

This refactoring leads to a noticeable performance bump when iterating
over 1 million refs:

  Benchmark 1: show-ref: single matching ref (revision = HEAD~)
    Time (mean ± σ):     112.2 ms ±   3.9 ms    [User: 109.3 ms, System: 2.8 ms]
    Range (min … max):   109.2 ms … 149.6 ms    1000 runs

  Benchmark 2: show-ref: single matching ref (revision = HEAD)
    Time (mean ± σ):     106.0 ms ±   3.5 ms    [User: 103.2 ms, System: 2.7 ms]
    Range (min … max):   103.2 ms … 133.7 ms    1000 runs

  Summary
    show-ref: single matching ref (revision = HEAD) ran
      1.06 ± 0.05 times faster than show-ref: single matching ref (revision = HEAD~)

Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2024-03-04 10:19:49 -08:00
Patrick Steinhardt
3ddef475d0 reftable/record: improve semantics when initializing records
According to our usual coding style, the `reftable_new_record()`
function would indicate that it is allocating a new record. This is not
the case though as the function merely initializes records without
allocating any memory.

Replace `reftable_new_record()` with a new `reftable_record_init()`
function that takes a record pointer as input and initializes it
accordingly.

Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2024-02-06 12:10:09 -08:00
Patrick Steinhardt
b4ff12c8ee reftable: introduce macros to allocate arrays
Similar to the preceding commit, let's carry over macros to allocate
arrays with `REFTABLE_ALLOC_ARRAY()` and `REFTABLE_CALLOC_ARRAY()`. This
requires us to change the signature of `reftable_calloc()`, which only
takes a single argument right now and thus puts the burden on the caller
to calculate the final array's size. This is a net improvement though as
it means that we can now provide proper overflow checks when multiplying
the array size with the member size.

Convert callsites of `reftable_calloc()` to the new signature and start
using the new macros where possible.

Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2024-02-06 12:10:08 -08:00
Patrick Steinhardt
b31e3cc620 reftable/record: store "val2" hashes as static arrays
Similar to the preceding commit, convert ref records of type "val2" to
store their object IDs in static arrays instead of allocating them for
every single record.

We're using the same benchmark as in the preceding commit, with `git
show-ref --quiet` in a repository with ~350k refs. This time around
though the effects aren't this huge. Before:

    HEAP SUMMARY:
        in use at exit: 21,163 bytes in 193 blocks
      total heap usage: 1,419,040 allocs, 1,418,847 frees, 62,153,868 bytes allocated

After:

    HEAP SUMMARY:
        in use at exit: 21,163 bytes in 193 blocks
      total heap usage: 1,410,148 allocs, 1,409,955 frees, 61,976,068 bytes allocated

This is because "val2"-type records are typically only stored for peeled
tags, and the number of annotated tags in the benchmark repository is
rather low. Still, it can be seen that this change leads to a reduction
of allocations overall, even if only a small one.

Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2024-01-03 09:54:21 -08:00
Patrick Steinhardt
7af607c58d reftable/record: store "val1" hashes as static arrays
When reading ref records of type "val1", we store its object ID in an
allocated array. This results in an additional allocation for every
single ref record we read, which is rather inefficient especially when
iterating over refs.

Refactor the code to instead use an embedded array of `GIT_MAX_RAWSZ`
bytes. While this means that `struct ref_record` is bigger now, we
typically do not store all refs in an array anyway and instead only
handle a limited number of records at the same point in time.

Using `git show-ref --quiet` in a repository with ~350k refs this leads
to a significant drop in allocations. Before:

    HEAP SUMMARY:
        in use at exit: 21,098 bytes in 192 blocks
      total heap usage: 2,116,683 allocs, 2,116,491 frees, 76,098,060 bytes allocated

After:

    HEAP SUMMARY:
        in use at exit: 21,098 bytes in 192 blocks
      total heap usage: 1,419,031 allocs, 1,418,839 frees, 62,145,036 bytes allocated

Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2024-01-03 09:54:20 -08:00
Ævar Arnfjörð Bjarmason
33665d98e6 reftable: make assignments portable to AIX xlc v12.01
Change the assignment syntax introduced in 66c0dabab5 (reftable: make
reftable_record a tagged union, 2022-01-20) to be portable to AIX xlc
v12.1:

    avar@gcc111:[/home/avar]xlc -qversion
    IBM XL C/C++ for AIX, V12.1 (5765-J02, 5725-C72)
    Version: 12.01.0000.0000

The error emitted before this was e.g.:

    "reftable/generic.c", line 133.26: 1506-196 (S) Initialization
    between types "char*" and "struct reftable_ref_record" is not
    allowed.

The syntax in the pre-image is supported by e.g. xlc 13.01 on a newer
AIX version:

    avar@gcc119:[/home/avar]xlc -qversion
    IBM XL C/C++ for AIX, V13.1.3 (5725-C72, 5765-J07)
    Version: 13.01.0003.0006

But as we've otherwise supported this compiler let's not break it
entirely if it's easy to work around it.

Suggested-by: René Scharfe <l.s.r@web.de>
Signed-off-by: Ævar Arnfjörð Bjarmason <avarab@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2022-03-28 13:58:10 -07:00
Han-Wen Nienhuys
01033de49f reftable: add print functions to the record types
This isn't used per se, but it is useful for debugging, especially
Windows CI failures.

Signed-off-by: Han-Wen Nienhuys <hanwen@google.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2022-01-20 11:31:53 -08:00
Han-Wen Nienhuys
66c0dabab5 reftable: make reftable_record a tagged union
This reduces the amount of glue code, because we don't need a void
pointer or vtable within the structure.

The only snag is that reftable_index_record contain a strbuf, so it
cannot be zero-initialized. To address this, use reftable_new_record()
to return fresh instance, given a record type. Since
reftable_new_record() doesn't cause heap allocation anymore, it should
be balanced with reftable_record_release() rather than
reftable_record_destroy().

Thanks to Peff for the suggestion.

Helped-by: Jeff King <peff@peff.net>
Signed-off-by: Han-Wen Nienhuys <hanwen@google.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2022-01-20 11:31:53 -08:00
Han-Wen Nienhuys
c983374035 reftable: implement record equality generically
This simplifies unittests a little, and provides further coverage for
reftable_record_copy().

Signed-off-by: Han-Wen Nienhuys <hanwen@google.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2022-01-20 11:31:53 -08:00
Han-Wen Nienhuys
e303bf22f9 reftable: (de)serialization for the polymorphic record type.
The reftable format is structured as a sequence of blocks, and each block
contains a sequence of prefix-compressed key-value records. There are 4 types of
records, and they have similarities in how they must be handled. This is
achieved by introducing a polymorphic 'record' type that encapsulates ref, log,
index and object records.

Signed-off-by: Han-Wen Nienhuys <hanwen@google.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-10-08 10:45:48 -07:00