Commit graph

10 commits

Author SHA1 Message Date
Junio C Hamano
c3a02824cf Merge branch 'ds/line-log-on-bloom'
"git log -L..." now takes advantage of the "which paths are touched
by this commit?" info stored in the commit-graph system.

* ds/line-log-on-bloom:
  line-log: integrate with changed-path Bloom filters
  line-log: try to use generation number-based topo-ordering
  line-log: more responsive, incremental 'git log -L'
  t4211-line-log: add tests for parent oids
  line-log: remove unused fields from 'struct line_log_data'
2020-06-08 18:06:26 -07:00
Junio C Hamano
4b1e5e5d8c Merge branch 'ds/bloom-cleanup'
Code cleanup and typofixes

* ds/bloom-cleanup:
  completion: offer '--(no-)patch' among 'git log' options
  bloom: use num_changes not nr for limit detection
  bloom: de-duplicate directory entries
  Documentation: changed-path Bloom filters use byte words
  bloom: parse commit before computing filters
  test-bloom: fix usage typo
  bloom: fix whitespace around tab length
2020-05-14 14:39:44 -07:00
Derrick Stolee
f32dde8c12 line-log: integrate with changed-path Bloom filters
The previous changes to the line-log machinery focused on making the
first result appear faster. This was achieved by no longer walking the
entire commit history before returning the early results. There is still
another way to improve the performance: walk most commits much faster.
Let's use the changed-path Bloom filters to reduce time spent computing
diffs.

Since the line-log computation requires opening blobs and checking the
content-diff, there is still a lot of necessary computation that cannot
be replaced with changed-path Bloom filters. The part that we can reduce
is most effective when checking the history of a file that is deep in
several directories and those directories are modified frequently. In
this case, the computation to check if a commit is TREESAME to its first
parent takes a large fraction of the time. That is ripe for improvement
with changed-path Bloom filters.

We must ensure that prepare_to_use_bloom_filters() is called in
revision.c so that the bloom_filter_settings are loaded into the struct
rev_info from the commit-graph. Of course, some cases are still
forbidden, but in the line-log case the pathspec is provided in a
different way than normal.

Since multiple paths and segments could be requested, we compute the
struct bloom_key data dynamically during the commit walk. This could
likely be improved, but adds code complexity that is not valuable at
this time.

There are two cases to care about: merge commits and "ordinary" commits.
Merge commits have multiple parents, but if we are TREESAME to our first
parent in every range, then pass the blame for all ranges to the first
parent. Ordinary commits have the same condition, but each is done
slightly differently in the process_ranges_[merge|ordinary]_commit()
methods. By checking if the changed-path Bloom filter can guarantee
TREESAME, we can avoid that tree-diff cost. If the filter says "probably
changed", then we need to run the tree-diff and then the blob-diff if
there was a real edit.

The Linux kernel repository is a good testing ground for the performance
improvements claimed here. There are two different cases to test. The
first is the "entire history" case, where we output the entire history
to /dev/null to see how long it would take to compute the full line-log
history. The second is the "first result" case, where we find how long
it takes to show the first value, which is an indicator of how quickly a
user would see responses when waiting at a terminal.

To test, I selected the paths that were changed most frequently in the
top 10,000 commits using this command (stolen from StackOverflow [1]):

	git log --pretty=format: --name-only -n 10000 | sort | \
		uniq -c | sort -rg | head -10

which results in

    121 MAINTAINERS
     63 fs/namei.c
     60 arch/x86/kvm/cpuid.c
     59 fs/io_uring.c
     58 arch/x86/kvm/vmx/vmx.c
     51 arch/x86/kvm/x86.c
     45 arch/x86/kvm/svm.c
     42 fs/btrfs/disk-io.c
     42 Documentation/scsi/index.rst

(along with a bogus first result). It appears that the path
arch/x86/kvm/svm.c was renamed, so we ignore that entry. This leaves the
following results for the real command time:

|                              | Entire History  | First Result    |
| Path                         | Before | After  | Before | After  |
|------------------------------|--------|--------|--------|--------|
| MAINTAINERS                  | 4.26 s | 3.87 s | 0.41 s | 0.39 s |
| fs/namei.c                   | 1.99 s | 0.99 s | 0.42 s | 0.21 s |
| arch/x86/kvm/cpuid.c         | 5.28 s | 1.12 s | 0.16 s | 0.09 s |
| fs/io_uring.c                | 4.34 s | 0.99 s | 0.94 s | 0.27 s |
| arch/x86/kvm/vmx/vmx.c       | 5.01 s | 1.34 s | 0.21 s | 0.12 s |
| arch/x86/kvm/x86.c           | 2.24 s | 1.18 s | 0.21 s | 0.14 s |
| fs/btrfs/disk-io.c           | 1.82 s | 1.01 s | 0.06 s | 0.05 s |
| Documentation/scsi/index.rst | 3.30 s | 0.89 s | 1.46 s | 0.03 s |

It is worth noting that the least speedup comes for the MAINTAINERS file
which is

 * edited frequently,
 * low in the directory heirarchy, and
 * quite a large file.

All of those points lead to spending more time doing the blob diff and
less time doing the tree diff. Still, we see some improvement in that
case and significant improvement in other cases. A 2-4x speedup is
likely the more typical case as opposed to the small 5% change for that
file.

Signed-off-by: Derrick Stolee <dstolee@microsoft.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-05-11 09:33:56 -07:00
Đoàn Trần Công Danh
066b70ae97 bloom: fix make sparse warning
* We need a `final_new_line` to make our source code as text file, per
  POSIX and C specification.
* `bloom_filters` should be limited to interal linkage only

Signed-off-by: Đoàn Trần Công Danh <congdanhqx@gmail.com>
Signed-off-by: Ramsay Jones <ramsay@ramsayjones.plus.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-05-07 17:08:21 -07:00
Derrick Stolee
eb591e42fd bloom: fix whitespace around tab length
Fix alignment issues that were likely introduced due to an editor
using tab lengths of 4 instead of 8.

Signed-off-by: Derrick Stolee <dstolee@microsoft.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-05-01 11:41:21 -07:00
Garima Singh
a56b9464cd revision.c: use Bloom filters to speed up path based revision walks
Revision walk will now use Bloom filters for commits to speed up
revision walks for a particular path (for computing history for
that path), if they are present in the commit-graph file.

We load the Bloom filters during the prepare_revision_walk step,
currently only when dealing with a single pathspec. Extending
it to work with multiple pathspecs can be explored and built on
top of this series in the future.

While comparing trees in rev_compare_trees(), if the Bloom filter
says that the file is not different between the two trees, we don't
need to compute the expensive diff. This is where we get our
performance gains. The other response of the Bloom filter is '`:maybe',
in which case we fall back to the full diff calculation to determine
if the path was changed in the commit.

We do not try to use Bloom filters when the '--walk-reflogs' option
is specified. The '--walk-reflogs' option does not walk the commit
ancestry chain like the rest of the options. Incorporating the
performance gains when walking reflog entries would add more
complexity, and can be explored in a later series.

Performance Gains:
We tested the performance of `git log -- <path>` on the git repo, the linux
and some internal large repos, with a variety of paths of varying depths.

On the git and linux repos:
- we observed a 2x to 5x speed up.

On a large internal repo with files seated 6-10 levels deep in the tree:
- we observed 10x to 20x speed ups, with some paths going up to 28 times
  faster.

Helped-by: Derrick Stolee <dstolee@microsoft.com
Helped-by: SZEDER Gábor <szeder.dev@gmail.com>
Helped-by: Jonathan Tan <jonathantanmy@google.com>
Signed-off-by: Garima Singh <garima.singh@microsoft.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-04-06 11:08:37 -07:00
Garima Singh
1217c03e7b commit-graph: reuse existing Bloom filters during write
Add logic to
a) parse Bloom filter information from the commit graph file and,
b) re-use existing Bloom filters.

See Documentation/technical/commit-graph-format for the format in which
the Bloom filter information is written to the commit graph file.

To read Bloom filter for a given commit with lexicographic position
'i' we need to:
1. Read BIDX[i] which essentially gives us the starting index in BDAT for
   filter of commit i+1. It is essentially the index past the end
   of the filter of commit i. It is called end_index in the code.

2. For i>0, read BIDX[i-1] which will give us the starting index in BDAT
   for filter of commit i. It is called the start_index in the code.
   For the first commit, where i = 0, Bloom filter data starts at the
   beginning, just past the header in the BDAT chunk. Hence, start_index
   will be 0.

3. The length of the filter will be end_index - start_index, because
   BIDX[i] gives the cumulative 8-byte words including the ith
   commit's filter.

We toggle whether Bloom filters should be recomputed based on the
compute_if_not_present flag.

Helped-by: Derrick Stolee <dstolee@microsoft.com>
Signed-off-by: Garima Singh <garima.singh@microsoft.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-04-06 11:08:37 -07:00
Garima Singh
ed591febb4 bloom.c: core Bloom filter implementation for changed paths.
Add the core implementation for computing Bloom filters for
the paths changed between a commit and it's first parent.

We fill the Bloom filters as (const char *data, int len) pairs
as `struct bloom_filters" within a commit slab.

Filters for commits with no changes and more than 512 changes,
is represented with a filter of length zero. There is no gain
in distinguishing between a computed filter of length zero for
a commit with no changes, and an uncomputed filter for new commits
or for commits with more than 512 changes. The effect on
`git log -- path` is the same in both cases. We will fall back to
the normal diffing algorithm when we can't benefit from the
existence of Bloom filters.

Helped-by: Jeff King <peff@peff.net>
Helped-by: Derrick Stolee <dstolee@microsoft.com>
Reviewed-by: Jakub Narębski <jnareb@gmail.com>
Signed-off-by: Garima Singh <garima.singh@microsoft.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-03-30 09:59:53 -07:00
Garima Singh
f1294eaf7f bloom.c: introduce core Bloom filter constructs
Introduce the constructs for Bloom filters, Bloom filter keys
and Bloom filter settings.
For details on what Bloom filters are and how they work, refer
to Dr. Derrick Stolee's blog post [1]. It provides a concise
explanation of the adoption of Bloom filters as described in
[2] and [3].

Implementation specifics:
1. We currently use 7 and 10 for the number of hashes and the
   size of each entry respectively. They served as great starting
   values, the mathematical details behind this choice are
   described in [1] and [4]. The implementation, while not
   completely open to it at the moment, is flexible enough to allow
   for tweaking these settings in the future.

   Note: The performance gains we have observed with these values
   are significant enough that we did not need to tweak these
   settings. The performance numbers are included in the cover letter
   of this series and in the commit message of the subsequent commit
   where we use Bloom filters to speed up `git log -- path`.

2. As described in [1] and [3], we do not need 7 independent hashing
   functions. We use the Murmur3 hashing scheme, seed it twice and
   then combine those to procure an arbitrary number of hash values.

3. The filters will be sized according to the number of changes in
   each commit, in multiples of 8 bit words.

[1] Derrick Stolee
      "Supercharging the Git Commit Graph IV: Bloom Filters"
      https://devblogs.microsoft.com/devops/super-charging-the-git-commit-graph-iv-Bloom-filters/

[2] Flavio Bonomi, Michael Mitzenmacher, Rina Panigrahy, Sushil Singh, George Varghese
    "An Improved Construction for Counting Bloom Filters"
    http://theory.stanford.edu/~rinap/papers/esa2006b.pdf
    https://doi.org/10.1007/11841036_61

[3] Peter C. Dillinger and Panagiotis Manolios
    "Bloom Filters in Probabilistic Verification"
    http://www.ccs.neu.edu/home/pete/pub/Bloom-filters-verification.pdf
    https://doi.org/10.1007/978-3-540-30494-4_26

[4] Thomas Mueller Graf, Daniel Lemire
    "Xor Filters: Faster and Smaller Than Bloom and Cuckoo Filters"
    https://arxiv.org/abs/1912.08258

Helped-by: Derrick Stolee <dstolee@microsoft.com>
Reviewed-by: Jakub Narębski <jnareb@gmail.com>
Signed-off-by: Garima Singh <garima.singh@microsoft.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-03-30 09:59:53 -07:00
Garima Singh
f52207a45c bloom.c: add the murmur3 hash implementation
In preparation for computing changed paths Bloom filters,
implement the Murmur3 hash algorithm as described in [1].
It hashes the given data using the given seed and produces
a uniformly distributed hash value.

[1] https://en.wikipedia.org/wiki/MurmurHash#Algorithm

Helped-by: Derrick Stolee <dstolee@microsoft.com>
Helped-by: Szeder Gábor <szeder.dev@gmail.com>
Reviewed-by: Jakub Narębski <jnareb@gmail.com>
Signed-off-by: Garima Singh <garima.singh@microsoft.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-03-30 09:59:53 -07:00