Commit graph

12 commits

Author SHA1 Message Date
brian m. carlson
ac73cedff0 hash: create union for hash context allocation
In various parts of our code, we want to allocate a structure
representing the internal state of a hash algorithm.  The original
implementation of the hash algorithm abstraction assumed we would do
that using heap allocations, and added a context size element to struct
git_hash_algo.  However, most of the existing code uses stack
allocations and conversion would needlessly complicate various parts of
the code.  Add a union for the purpose of allocating hash contexts on
the stack and a typedef for ease of use.  Use this union for defining
the init, update, and final functions to avoid casts.  Remove the ctxsz
element for struct git_hash_algo, which is no longer very useful.

This does mean that stack allocations will grow slightly as additional
hash functions are added, but this should not be a significant problem,
since we don't allocate many hash contexts.  The improved usability and
benefits from avoiding dynamic allocation outweigh this small downside.

Signed-off-by: brian m. carlson <sandals@crustytoothpaste.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2018-02-02 11:28:41 -08:00
brian m. carlson
164e716330 hash: move SHA-1 macros to hash.h
Most of the other code dealing with SHA-1 and other hashes is located in
hash.h, which is in turn loaded by cache.h.  Move the SHA-1 macros to
hash.h as well, so we can use them in additional hash-related items in
the future.

Signed-off-by: brian m. carlson <sandals@crustytoothpaste.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2018-02-02 11:28:40 -08:00
brian m. carlson
f50e766b7b Add structure representing hash algorithm
Since in the future we want to support an additional hash algorithm, add
a structure that represents a hash algorithm and all the data that must
go along with it.  Add a constant to allow easy enumeration of hash
algorithms.  Implement function typedefs to create an abstract API that
can be used by any hash algorithm, and wrappers for the existing SHA1
functions that conform to this API.

Expose a value for hex size as well as binary size.  While one will
always be twice the other, the two values are both used extremely
commonly throughout the codebase and providing both leads to improved
readability.

Don't include an entry in the hash algorithm structure for the null
object ID.  As this value is all zeros, any suitably sized all-zero
object ID can be used, and there's no need to store a given one on a
per-hash basis.

The current hash function transition plan envisions a time when we will
accept input from the user that might be in SHA-1 or in the NewHash
format.  Since we cannot know which the user has provided, add a
constant representing the unknown algorithm to allow us to indicate that
we must look the correct value up.  Provide dummy API functions that die
in this case.

Finally, include git-compat-util.h in hash.h so that the required types
are available.  This aids people using automated tools their editors.

Signed-off-by: brian m. carlson <sandals@crustytoothpaste.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2017-11-13 13:20:44 +09:00
Takashi Iwai
36f048c5e4 sha1dc: build git plumbing code more explicitly
The plumbing code between sha1dc and git is defined in
sha1dc_git.[ch], but these aren't compiled / included directly but
only via the indirect inclusion from sha1dc code.  This is slightly
confusing when you try to trace the build flow.

This patch brings the following changes for simplification:

  - Make sha1dc_git.c stand-alone and build from Makefile

  - sha1dc_git.h is the common header to include further sha1.h
    depending on the build condition

  - Move comments for plumbing codes from the header to definitions

This is also meant as a preliminary work for further plumbing with
external sha1dc shlib.

Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2017-08-16 14:43:59 -07:00
Ævar Arnfjörð Bjarmason
86cfd61e6b sha1dc: optionally use sha1collisiondetection as a submodule
Add an option to use the sha1collisiondetection library from the
submodule in sha1collisiondetection/ instead of in the copy in the
sha1dc/ directory.

This allows us to try out the submodule in sha1collisiondetection
without breaking the build for anyone who's not expecting them as we
work out any kinks.

Signed-off-by: Ævar Arnfjörð Bjarmason <avarab@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2017-07-03 10:09:34 -07:00
Jeff King
8325e43b82 Makefile: add DC_SHA1 knob
This knob lets you use the sha1dc implementation from:

      https://github.com/cr-marcstevens/sha1collisiondetection

which can detect certain types of collision attacks (even
when we only see half of the colliding pair). So it
mitigates any attack which consists of getting the "good"
half of a collision into a trusted repository, and then
later replacing it with the "bad" half. The "good" half is
rejected by the victim's version of Git (and even if they
run an old version of Git, any sha1dc-enabled git will
complain loudly if it ever has to interact with the object).

The big downside is that it's slower than either the openssl
or block-sha1 implementations.

Here are some timings based off of linux.git:

  - compute sha1 over whole packfile
      sha1dc: 3.580s
    blk-sha1: 2.046s (-43%)
     openssl: 1.335s (-62%)

  - rev-list --all --objects
      sha1dc: 33.512s
    blk-sha1: 33.514s (+0.0%)
     openssl: 33.650s (+0.4%)

  - git log --no-merges -10000 -p
      sha1dc: 8.124s
    blk-sha1: 7.986s (-1.6%)
     openssl: 8.203s (+0.9%)

  - index-pack --verify
      sha1dc: 4m19s
    blk-sha1: 2m57s (-32%)
     openssl: 2m19s (-42%)

So overall the sha1 computation with collision detection is
about 1.75x slower than block-sha1, and 2.7x slower than
sha1. But of course most operations do more than just sha1.
Normal object access isn't really slowed at all (both the
+/- changes there are well within the run-to-run noise); any
changes are drowned out by the other work Git is doing.

The most-affected operation is `index-pack --verify`, which
is essentially just computing the sha1 on every object. This
is similar to the `index-pack` invocation that the receiver
of a push or fetch would perform. So clearly there's some
extra CPU load here.

There will also be some latency for the user, though keep in
mind that such an operation will generally be network bound
(this is about a 1.2GB packfile). Some of that extra CPU is
"free" in the sense that we use it while the pack is
streaming in anyway. But most of it comes during the
delta-resolution phase, after the whole pack has been
received. So we can imagine that for this (quite large)
push, the user might have to wait an extra 100 seconds over
openssl (which is what we use now). If we assume they can
push to us at 20Mbit/s, that's 480s for a 1.2GB pack, which
is only 20% slower.

Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2017-03-17 10:40:25 -07:00
brian m. carlson
f18f816cb1 hash.h: move SHA-1 implementation selection into a header file
Many developers use functionality in their editors that allows for quick
syntax checks, including warning about questionable constructs.  This
functionality allows rapid development with fewer errors.  However, such
functionality generally does not allow the specification of
project-specific defines or command-line options.

Since the SHA1_HEADER include is not defined in such a case,
developers see spurious errors when using these tools.  Furthermore,
there are known implementations of "cc" whose '#include' is unhappy
with this construct.

Instead of using SHA1_HEADER, create a hash.h header and use #if
and #elif to select the desired header.  Have the Makefile pass an
appropriate option to help the header select the right implementation to
use.

[jc: make BLK_SHA1 the fallback default as discussed on list,
e.g. <20170314201424.vccij5z2ortq4a4o@sigill.intra.peff.net>; also
remove SHA1_HEADER and SHA1_HEADER_SQ that are no longer used].

Signed-off-by: brian m. carlson <sandals@crustytoothpaste.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Reviewed-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2017-03-15 11:00:09 -07:00
Karsten Blees
efc684245b remove old hash.[ch] implementation
Signed-off-by: Karsten Blees <blees@dcon.de>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-11-18 13:04:25 -08:00
Nguyễn Thái Ngọc Duy
c73592812d Preallocate hash tables when the number of inserts are known in advance
This avoids unnecessary re-allocations and reinsertions. On webkit.git
(i.e. about 182k inserts to the name hash table), this reduces about
100ms out of 3s user time.

Signed-off-by: Nguyễn Thái Ngọc Duy <pclouds@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-03-16 22:57:29 -07:00
Linus Torvalds
11f944dd6b for_each_hash: allow passing a 'void *data' pointer to callback
For the find_exact_renames() function, this allows us to pass the
diff_options structure pointer to the low-level routines.  We will use
that to distinguish between the "rename" and "copy" cases.

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2011-02-18 22:25:51 -08:00
Linus Torvalds
d1f128b050 Add 'const' where appropriate to index handling functions
This is in an effort to make the source index of 'unpack_trees()' as
being const, and thus making the compiler help us verify that we only
access it for reading.

The constification also extended to some of the hashing helpers that get
called indirectly.

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2008-03-09 00:43:48 -08:00
Linus Torvalds
9027f53cb5 Do linear-time/space rename logic for exact renames
This implements a smarter rename detector for exact renames, which
rather than doing a pairwise comparison (time O(m*n)) will just hash the
files into a hash-table (size O(n+m)), and only do pairwise comparisons
to renames that have the same hash (time O(n+m) except for unrealistic
hash collissions, which we just cull aggressively).

Admittedly the exact rename case is not nearly as interesting as the
generic case, but it's an important case none-the-less. A similar general
approach should work for the generic case too, but even then you do need
to handle the exact renames/copies separately (to avoid the inevitable
added cost factor that comes from the _size_ of the file), so this is
worth doing.

In the expectation that we will indeed do the same hashing trick for the
general rename case, this code uses a generic hash-table implementation
that can be used for other things too.  In fact, we might be able to
consolidate some of our existing hash tables with the new generic code
in hash.[ch].

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2007-10-26 23:18:06 -07:00