Commit graph

14 commits

Author SHA1 Message Date
Patrick Steinhardt 57db2a094d refs: introduce reftable backend
Due to scalability issues, Shawn Pearce has originally proposed a new
"reftable" format more than six years ago [1]. Initially, this new
format was implemented in JGit with promising results. Around two years
ago, we have then added the "reftable" library to the Git codebase via
a4bbd13be3 (Merge branch 'hn/reftable', 2021-12-15). With this we have
landed all the low-level code to read and write reftables. Notably
missing though was the integration of this low-level code into the Git
code base in the form of a new ref backend that ties all of this
together.

This gap is now finally closed by introducing a new "reftable" backend
into the Git codebase. This new backend promises to bring some notable
improvements to Git repositories:

  - It becomes possible to do truly atomic writes where either all refs
    are committed to disk or none are. This was not possible with the
    "files" backend because ref updates were split across multiple loose
    files.

  - The disk space required to store many refs is reduced, both compared
    to loose refs and packed-refs. This is enabled both by the reftable
    format being a binary format, which is more compact, and by prefix
    compression.

  - We can ignore filesystem-specific behaviour as ref names are not
    encoded via paths anymore. This means there is no need to handle
    case sensitivity on Windows systems or Unicode precomposition on
    macOS.

  - There is no need to rewrite the complete refdb anymore every time a
    ref is being deleted like it was the case for packed-refs. This
    means that ref deletions are now constant time instead of scaling
    linearly with the number of refs.

  - We can ignore file/directory conflicts so that it becomes possible
    to store both "refs/heads/foo" and "refs/heads/foo/bar".

  - Due to this property we can retain reflogs for deleted refs. We have
    previously been deleting reflogs together with their refs to avoid
    file/directory conflicts, which is not necessary anymore.

  - We can properly enumerate all refs. With the "files" backend it is
    not easily possible to distinguish between refs and non-refs because
    they may live side by side in the gitdir.

Not all of these improvements are realized with the current "reftable"
backend implementation. At this point, the new backend is supposed to be
a drop-in replacement for the "files" backend that is used by basically
all Git repositories nowadays. It strives for 1:1 compatibility, which
means that a user can expect the same behaviour regardless of whether
they use the "reftable" backend or the "files" backend for most of the
part.

Most notably, this means we artificially limit the capabilities of the
"reftable" backend to match the limits of the "files" backend. It is not
possible to create refs that would end up with file/directory conflicts,
we do not retain reflogs, we perform stricter-than-necessary checks.
This is done intentionally due to two main reasons:

  - It makes it significantly easier to land the "reftable" backend as
    tests behave the same. It would be tough to argue for each and every
    single test that doesn't pass with the "reftable" backend.

  - It ensures compatibility between repositories that use the "files"
    backend and repositories that use the "reftable" backend. Like this,
    hosters can migrate their repositories to use the "reftable" backend
    without causing issues for clients that use the "files" backend in
    their clones.

It is expected that these artificial limitations may eventually go away
in the long term.

Performance-wise things very much depend on the actual workload. The
following benchmarks compare the "files" and "reftable" backends in the
current version:

  - Creating N refs in separate transactions shows that the "files"
    backend is ~50% faster. This is not surprising given that creating a
    ref only requires us to create a single loose ref. The "reftable"
    backend will also perform auto compaction on updates. In real-world
    workloads we would likely also want to perform pack loose refs,
    which would likely change the picture.

        Benchmark 1: update-ref: create refs sequentially (refformat = files, refcount = 1)
          Time (mean ± σ):       2.1 ms ±   0.3 ms    [User: 0.6 ms, System: 1.7 ms]
          Range (min … max):     1.8 ms …   4.3 ms    133 runs

        Benchmark 2: update-ref: create refs sequentially (refformat = reftable, refcount = 1)
          Time (mean ± σ):       2.7 ms ±   0.1 ms    [User: 0.6 ms, System: 2.2 ms]
          Range (min … max):     2.4 ms …   2.9 ms    132 runs

        Benchmark 3: update-ref: create refs sequentially (refformat = files, refcount = 1000)
          Time (mean ± σ):      1.975 s ±  0.006 s    [User: 0.437 s, System: 1.535 s]
          Range (min … max):    1.969 s …  1.980 s    3 runs

        Benchmark 4: update-ref: create refs sequentially (refformat = reftable, refcount = 1000)
          Time (mean ± σ):      2.611 s ±  0.013 s    [User: 0.782 s, System: 1.825 s]
          Range (min … max):    2.597 s …  2.622 s    3 runs

        Benchmark 5: update-ref: create refs sequentially (refformat = files, refcount = 100000)
          Time (mean ± σ):     198.442 s ±  0.241 s    [User: 43.051 s, System: 155.250 s]
          Range (min … max):   198.189 s … 198.670 s    3 runs

        Benchmark 6: update-ref: create refs sequentially (refformat = reftable, refcount = 100000)
          Time (mean ± σ):     294.509 s ±  4.269 s    [User: 104.046 s, System: 190.326 s]
          Range (min … max):   290.223 s … 298.761 s    3 runs

  - Creating N refs in a single transaction shows that the "files"
    backend is significantly slower once we start to write many refs.
    The "reftable" backend only needs to update two files, whereas the
    "files" backend needs to write one file per ref.

        Benchmark 1: update-ref: create many refs (refformat = files, refcount = 1)
          Time (mean ± σ):       1.9 ms ±   0.1 ms    [User: 0.4 ms, System: 1.4 ms]
          Range (min … max):     1.8 ms …   2.6 ms    151 runs

        Benchmark 2: update-ref: create many refs (refformat = reftable, refcount = 1)
          Time (mean ± σ):       2.5 ms ±   0.1 ms    [User: 0.7 ms, System: 1.7 ms]
          Range (min … max):     2.4 ms …   3.4 ms    148 runs

        Benchmark 3: update-ref: create many refs (refformat = files, refcount = 1000)
          Time (mean ± σ):     152.5 ms ±   5.2 ms    [User: 19.1 ms, System: 133.1 ms]
          Range (min … max):   148.5 ms … 167.8 ms    15 runs

        Benchmark 4: update-ref: create many refs (refformat = reftable, refcount = 1000)
          Time (mean ± σ):      58.0 ms ±   2.5 ms    [User: 28.4 ms, System: 29.4 ms]
          Range (min … max):    56.3 ms …  72.9 ms    40 runs

        Benchmark 5: update-ref: create many refs (refformat = files, refcount = 1000000)
          Time (mean ± σ):     152.752 s ±  0.710 s    [User: 20.315 s, System: 131.310 s]
          Range (min … max):   152.165 s … 153.542 s    3 runs

        Benchmark 6: update-ref: create many refs (refformat = reftable, refcount = 1000000)
          Time (mean ± σ):     51.912 s ±  0.127 s    [User: 26.483 s, System: 25.424 s]
          Range (min … max):   51.769 s … 52.012 s    3 runs

  - Deleting a ref in a fully-packed repository shows that the "files"
    backend scales with the number of refs. The "reftable" backend has
    constant-time deletions.

        Benchmark 1: update-ref: delete ref (refformat = files, refcount = 1)
          Time (mean ± σ):       1.7 ms ±   0.1 ms    [User: 0.4 ms, System: 1.2 ms]
          Range (min … max):     1.6 ms …   2.1 ms    316 runs

        Benchmark 2: update-ref: delete ref (refformat = reftable, refcount = 1)
          Time (mean ± σ):       1.8 ms ±   0.1 ms    [User: 0.4 ms, System: 1.3 ms]
          Range (min … max):     1.7 ms …   2.1 ms    294 runs

        Benchmark 3: update-ref: delete ref (refformat = files, refcount = 1000)
          Time (mean ± σ):       2.0 ms ±   0.1 ms    [User: 0.5 ms, System: 1.4 ms]
          Range (min … max):     1.9 ms …   2.5 ms    287 runs

        Benchmark 4: update-ref: delete ref (refformat = reftable, refcount = 1000)
          Time (mean ± σ):       1.9 ms ±   0.1 ms    [User: 0.5 ms, System: 1.3 ms]
          Range (min … max):     1.8 ms …   2.1 ms    217 runs

        Benchmark 5: update-ref: delete ref (refformat = files, refcount = 1000000)
          Time (mean ± σ):     229.8 ms ±   7.9 ms    [User: 182.6 ms, System: 46.8 ms]
          Range (min … max):   224.6 ms … 245.2 ms    6 runs

        Benchmark 6: update-ref: delete ref (refformat = reftable, refcount = 1000000)
          Time (mean ± σ):       2.0 ms ±   0.0 ms    [User: 0.6 ms, System: 1.3 ms]
          Range (min … max):     2.0 ms …   2.1 ms    3 runs

  - Listing all refs shows no significant advantage for either of the
    backends. The "files" backend is a bit faster, but not by a
    significant margin. When repositories are not packed the "reftable"
    backend outperforms the "files" backend because the "reftable"
    backend performs auto-compaction.

        Benchmark 1: show-ref: print all refs (refformat = files, refcount = 1, packed = true)
          Time (mean ± σ):       1.6 ms ±   0.1 ms    [User: 0.4 ms, System: 1.1 ms]
          Range (min … max):     1.5 ms …   2.0 ms    1729 runs

        Benchmark 2: show-ref: print all refs (refformat = reftable, refcount = 1, packed = true)
          Time (mean ± σ):       1.6 ms ±   0.1 ms    [User: 0.4 ms, System: 1.1 ms]
          Range (min … max):     1.5 ms …   1.8 ms    1816 runs

        Benchmark 3: show-ref: print all refs (refformat = files, refcount = 1000, packed = true)
          Time (mean ± σ):       4.3 ms ±   0.1 ms    [User: 0.9 ms, System: 3.3 ms]
          Range (min … max):     4.1 ms …   4.6 ms    645 runs

        Benchmark 4: show-ref: print all refs (refformat = reftable, refcount = 1000, packed = true)
          Time (mean ± σ):       4.5 ms ±   0.2 ms    [User: 1.0 ms, System: 3.3 ms]
          Range (min … max):     4.2 ms …   5.9 ms    643 runs

        Benchmark 5: show-ref: print all refs (refformat = files, refcount = 1000000, packed = true)
          Time (mean ± σ):      2.537 s ±  0.034 s    [User: 0.488 s, System: 2.048 s]
          Range (min … max):    2.511 s …  2.627 s    10 runs

        Benchmark 6: show-ref: print all refs (refformat = reftable, refcount = 1000000, packed = true)
          Time (mean ± σ):      2.712 s ±  0.017 s    [User: 0.653 s, System: 2.059 s]
          Range (min … max):    2.692 s …  2.752 s    10 runs

        Benchmark 7: show-ref: print all refs (refformat = files, refcount = 1, packed = false)
          Time (mean ± σ):       1.6 ms ±   0.1 ms    [User: 0.4 ms, System: 1.1 ms]
          Range (min … max):     1.5 ms …   1.9 ms    1834 runs

        Benchmark 8: show-ref: print all refs (refformat = reftable, refcount = 1, packed = false)
          Time (mean ± σ):       1.6 ms ±   0.1 ms    [User: 0.4 ms, System: 1.1 ms]
          Range (min … max):     1.4 ms …   2.0 ms    1840 runs

        Benchmark 9: show-ref: print all refs (refformat = files, refcount = 1000, packed = false)
          Time (mean ± σ):      13.8 ms ±   0.2 ms    [User: 2.8 ms, System: 10.8 ms]
          Range (min … max):    13.3 ms …  14.5 ms    208 runs

        Benchmark 10: show-ref: print all refs (refformat = reftable, refcount = 1000, packed = false)
          Time (mean ± σ):       4.5 ms ±   0.2 ms    [User: 1.2 ms, System: 3.3 ms]
          Range (min … max):     4.3 ms …   6.2 ms    624 runs

        Benchmark 11: show-ref: print all refs (refformat = files, refcount = 1000000, packed = false)
          Time (mean ± σ):     12.127 s ±  0.129 s    [User: 2.675 s, System: 9.451 s]
          Range (min … max):   11.965 s … 12.370 s    10 runs

        Benchmark 12: show-ref: print all refs (refformat = reftable, refcount = 1000000, packed = false)
          Time (mean ± σ):      2.799 s ±  0.022 s    [User: 0.735 s, System: 2.063 s]
          Range (min … max):    2.769 s …  2.836 s    10 runs

  - Printing a single ref shows no real difference between the "files"
    and "reftable" backends.

        Benchmark 1: show-ref: print single ref (refformat = files, refcount = 1)
          Time (mean ± σ):       1.5 ms ±   0.1 ms    [User: 0.4 ms, System: 1.0 ms]
          Range (min … max):     1.4 ms …   1.8 ms    1779 runs

        Benchmark 2: show-ref: print single ref (refformat = reftable, refcount = 1)
          Time (mean ± σ):       1.6 ms ±   0.1 ms    [User: 0.4 ms, System: 1.1 ms]
          Range (min … max):     1.4 ms …   2.5 ms    1753 runs

        Benchmark 3: show-ref: print single ref (refformat = files, refcount = 1000)
          Time (mean ± σ):       1.5 ms ±   0.1 ms    [User: 0.3 ms, System: 1.1 ms]
          Range (min … max):     1.4 ms …   1.9 ms    1840 runs

        Benchmark 4: show-ref: print single ref (refformat = reftable, refcount = 1000)
          Time (mean ± σ):       1.6 ms ±   0.1 ms    [User: 0.4 ms, System: 1.1 ms]
          Range (min … max):     1.5 ms …   2.0 ms    1831 runs

        Benchmark 5: show-ref: print single ref (refformat = files, refcount = 1000000)
          Time (mean ± σ):       1.6 ms ±   0.1 ms    [User: 0.4 ms, System: 1.1 ms]
          Range (min … max):     1.5 ms …   2.1 ms    1848 runs

        Benchmark 6: show-ref: print single ref (refformat = reftable, refcount = 1000000)
          Time (mean ± σ):       1.6 ms ±   0.1 ms    [User: 0.4 ms, System: 1.1 ms]
          Range (min … max):     1.5 ms …   2.1 ms    1762 runs

So overall, performance depends on the usecases. Except for many
sequential writes the "reftable" backend is roughly on par or
significantly faster than the "files" backend though. Given that the
"files" backend has received 18 years of optimizations by now this can
be seen as a win. Furthermore, we can expect that the "reftable" backend
will grow faster over time when attention turns more towards
optimizations.

The complete test suite passes, except for those tests explicitly marked
to require the REFFILES prerequisite. Some tests in t0610 are marked as
failing because they depend on still-in-flight bug fixes. Tests can be
run with the new backend by setting the GIT_TEST_DEFAULT_REF_FORMAT
environment variable to "reftable".

There is a single known conceptual incompatibility with the dumb HTTP
transport. As "info/refs" SHOULD NOT contain the HEAD reference, and
because the "HEAD" file is not valid anymore, it is impossible for the
remote client to figure out the default branch without changing the
protocol. This shortcoming needs to be handled in a subsequent patch
series.

As the reftable library has already been introduced a while ago, this
commit message will not go into the details of how exactly the on-disk
format works. Please refer to our preexisting technical documentation at
Documentation/technical/reftable for this.

[1]: https://public-inbox.org/git/CAJo=hJtyof=HRy=2sLP0ng0uZ4=S-DpZ5dR1aF+VHVETKG20OQ@mail.gmail.com/

Original-idea-by: Shawn Pearce <spearce@spearce.org>
Based-on-patch-by: Han-Wen Nienhuys <hanwen@google.com>
Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2024-02-07 08:28:37 -08:00
Johannes Schindelin bee286f8f7 git-new-workdir: mark script as LF-only
Bash does not handle scripts with CR/LF line endings correctly, therefore
they *have* to be forced to LF-only line endings.

Funnily enough, this fixes t3000-ls-files-others and
t1021-rerere-in-workdir when git.git was checked out with
core.autocrlf=true, as these test still use git-new-workdir (once `git
worktree` is no longer marked as experimental, both scripts probably
want to be ported to using that command instead).

Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
Reviewed-by: Jonathan Nieder <jrnieder@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2017-05-10 13:32:50 +09:00
Paul Smith e32afab7b0 git-new-workdir: don't fail if the target directory is empty
Allow new workdirs to be created in an empty directory (similar to "git
clone").  Provide more error checking and clean up on failure.

Signed-off-by: Paul Smith <paul@mad-scientist.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2014-12-03 12:49:24 -08:00
Jeff King afa0876050 prefer test -h over test -L in shell scripts
Even though "-L" is POSIX, the former is more portable, and
we tend to prefer it already.

Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2010-09-27 10:48:23 -07:00
Ralf Wildenhues 22e5e58a3c Typos in code comments, an error message, documentation
Signed-off-by: Ralf Wildenhues <Ralf.Wildenhues@gmx.de>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2010-08-22 13:25:08 -07:00
Richard Hartmann f66bc5f928 Always show which directory is not a git repository
Unify all

  fatal: Not a git repository

error messages so they include path information.

Signed-off-by: Richard Hartmann <richih@net.in.tum.de>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2008-12-21 18:46:41 -08:00
Bernt Hansen ac378633f3 git-new-workdir: Share SVN meta data between work dirs and the repository
Multiple work dirs with git svn caused each work dir to have its own
stale copy of the SVN meta data in .git/svn

git svn rebase updates commits with git-svn-id: in the repository and
stores the SVN meta data information only in that work dir.  Attempting to
git svn rebase in other work dirs for the same branch would fail because
the last revision fetched according to the git-svn-id is greater than the
revision in the SVN meta data for that work directory.

Signed-off-by: Bernt Hansen <bernt@norang.ca>
Acked-by: Eric Wong <normalperson@yhbt.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2008-03-15 00:05:18 -07:00
Shawn O. Pearce ea09ea22d6 Don't allow contrib/workdir/git-new-workdir to trash existing dirs
Recently I found that doing a sequence like the following:

  git-new-workdir a b
  ...
  git-new-workdir a b

by accident will cause a (and now also b) to have an infinite cycle
in its refs directory.  This is caused by git-new-workdir trying
to create the "refs" symlink over again, only during the second
time it is being created within a's refs directory and is now also
pointing back at a's refs.

This causes confusion in git as suddenly branches are named things
like "refs/refs/refs/refs/refs/refs/refs/heads/foo" instead of the
more commonly accepted "refs/heads/foo".  Plenty of commands start
to see ambiguous ref names and others just take ages to compute.

git-clone has the same safety check, so git-new-workdir should
behave just like it.

Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2007-09-05 22:24:54 -07:00
Shawn O. Pearce 8fa0ee3b50 Suggest unsetting core.bare when using new-workdir on a bare repository
If core.bare is set to true in the config file of a repository that
the user is trying to create a working directory from we should
abort and suggest to the user that they remove the option first.

If we leave the core.bare=true setting in the config file then
working tree operations will get confused when they attempt to
execute in the new workdir, as it shares its config file with the
bare repository.  The working tree operations will assume that the
workdir is bare and abort, which is not what the user wants.

If we changed core.bare to be false then working tree operations
will function in the workdir but other operations may fail in the
bare repository, as it claims to not be bare.

If we remove core.bare from the config then Git can fallback on
the legacy guessing behavior.  This allows operations in the bare
repository to work as though it were bare, while operations in the
workdirs to act as though they are not bare.

Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2007-08-22 15:18:13 -07:00
Shawn O. Pearce e301bfeea1 Fix new-workdir (again) to work on bare repositories
My day-job workflow involves using multiple workdirs attached to a
bunch of bare repositories.  Such repositories are stored inside of
a directory called "foo.git", which means `git rev-parse --git-dir`
will return "." and not ".git".  Under such conditions new-workdir
was getting confused about where the Git repository it was supplied
is actually located.

If we get "." for the result of --git-dir query it means we should
use the user supplied path as-is, and not attempt to perform any
magic on it, as the path is directly to the repository.

Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2007-08-22 15:18:13 -07:00
Simon Hausmann b658d50325 git-new-workdir: Fix shell warning about operator == used with test.
Use = instead of == with test to test for equality.

Signed-off-by: Simon Hausmann <simon@lst.de>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2007-06-26 18:18:47 -07:00
Julian Phillips 09381b458f new-workdir: handle rev-parse --git-dir not always giving full path
rev-parse --git-dir outputs a full path - except for the single case
of when the path would be $(pwd)/.git, in which case it outputs simply
.git.  Check for this special case and handle it.

Signed-off-by: Julian Phillips <julian@quantumfyre.co.uk>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2007-06-24 02:36:56 -07:00
Shawn O. Pearce 2e4aef5893 Allow contrib new-workdir to link into bare repositories
On one particular system I like to keep a cluster of bare Git
repositories and spawn new-workdirs off of them.  Since the bare
repositories don't have working directories associated with them
they don't have a .git/ subdirectory that hosts the repository we
are linking to.

Using a bare repository as the backing repository for a workdir
created by this script does require that the user delete core.bare
from the repository's configuration file, so that Git auto-senses
the bareness of a repository based on pathname information, and
not based on the config file.

Signed-off-by: Shawn O. Pearce <spearce@spearce.org>
Signed-off-by: Junio C Hamano <junkio@cox.net>
2007-05-29 00:27:21 -07:00
Julian Phillips 4f01748d51 contrib/workdir: add a simple script to create a working directory
Add a simple script to create a working directory that uses symlinks
to point at an exisiting repository.  This allows having different
branches in different working directories but all from the same
repository.

Based on a description from Junio of how he creates multiple working
directories[1].  With the following caveat:

"This risks confusion for an uninitiated if you update a ref that
is checked out in another working tree, but modulo that caveat
it works reasonably well."

[1] http://article.gmane.org/gmane.comp.version-control.git/41513/

Signed-off-by: Julian Phillips <julian@quantumfyre.co.uk>
Signed-off-by: Junio C Hamano <junkio@cox.net>
2007-03-31 01:26:28 -07:00