Commit graph

9 commits

Author SHA1 Message Date
Patrick Steinhardt 3ddef475d0 reftable/record: improve semantics when initializing records
According to our usual coding style, the `reftable_new_record()`
function would indicate that it is allocating a new record. This is not
the case though as the function merely initializes records without
allocating any memory.

Replace `reftable_new_record()` with a new `reftable_record_init()`
function that takes a record pointer as input and initializes it
accordingly.

Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2024-02-06 12:10:09 -08:00
Patrick Steinhardt b4ff12c8ee reftable: introduce macros to allocate arrays
Similar to the preceding commit, let's carry over macros to allocate
arrays with `REFTABLE_ALLOC_ARRAY()` and `REFTABLE_CALLOC_ARRAY()`. This
requires us to change the signature of `reftable_calloc()`, which only
takes a single argument right now and thus puts the burden on the caller
to calculate the final array's size. This is a net improvement though as
it means that we can now provide proper overflow checks when multiplying
the array size with the member size.

Convert callsites of `reftable_calloc()` to the new signature and start
using the new macros where possible.

Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2024-02-06 12:10:08 -08:00
Patrick Steinhardt f6b58c1be4 reftable: introduce macros to grow arrays
Throughout the reftable library we have many cases where we need to grow
arrays. In order to avoid too many reallocations, we roughly double the
capacity of the array on each iteration. The resulting code pattern is
duplicated across many sites.

We have similar patterns in our main codebase, which is why we have
eventually introduced an `ALLOC_GROW()` macro to abstract it away and
avoid some code duplication. We cannot easily reuse this macro here
though because `ALLOC_GROW()` uses `REALLOC_ARRAY()`, which in turn will
call realloc(3P) to grow the array. The reftable code is structured as a
library though (even if the boundaries are fuzzy), and one property this
brings with it is that it is possible to plug in your own allocators. So
instead of using realloc(3P), we need to use `reftable_realloc()` that
knows to use the user-provided implementation.

So let's introduce two new macros `REFTABLE_REALLOC_ARRAY()` and
`REFTABLE_ALLOC_GROW()` that mirror what we do in our main codebase,
with two modifications:

  - They use `reftable_realloc()`, as explained above.

  - They use a different growth factor of `2 * cap + 1` instead of `(cap
    + 16) * 3 / 2`.

The second change is because we know a bit more about the allocation
patterns in the reftable library. In most cases, we end up only having a
handful of items in the array and don't end up growing them. The initial
capacity that our normal growth factor uses (which is 24) would thus end
up over-allocating in a lot of code paths. This effect is measurable:

  - Before change:

      HEAP SUMMARY:
          in use at exit: 671,983 bytes in 152 blocks
        total heap usage: 3,843,446 allocs, 3,843,294 frees, 223,761,402 bytes allocated

  - After change with a growth factor of `(2 * alloc + 1)`:

      HEAP SUMMARY:
          in use at exit: 671,983 bytes in 152 blocks
        total heap usage: 3,843,446 allocs, 3,843,294 frees, 223,761,410 bytes allocated

  - After change with a growth factor of `(alloc + 16)* 2 / 3`:

      HEAP SUMMARY:
          in use at exit: 671,983 bytes in 152 blocks
        total heap usage: 3,833,673 allocs, 3,833,521 frees, 4,728,251,742 bytes allocated

While the total heap usage is roughly the same, we do end up allocating
significantly more bytes with our usual growth factor (in fact, roughly
21 times as many).

Convert the reftable library to use these new macros.

Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2024-02-06 12:10:08 -08:00
Patrick Steinhardt c0cadb0576 reftable/block: reuse buffer to compute record keys
When iterating over entries in the block iterator we compute the key of
each of the entries and write it into a buffer. We do not reuse the
buffer though and thus re-allocate it on every iteration, which is
wasteful.

Refactor the code to reuse the buffer.

Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2023-12-11 07:23:17 -08:00
Patrick Steinhardt a8305bc6d8 reftable/block: introduce macro to initialize struct block_iter
There are a bunch of locations where we initialize members of `struct
block_iter`, which makes it harder than necessary to expand this struct
to have additional members. Unify the logic via a new `BLOCK_ITER_INIT`
macro that initializes all members.

Signed-off-by: Patrick Steinhardt <ps@pks.im>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2023-12-11 07:23:17 -08:00
Han-Wen Nienhuys 45c2fcc2a0 reftable: avoid writing empty keys at the block layer
The public interface (reftable_writer) already ensures that keys are
written in strictly increasing order, and an empty key by definition
fails this check.

However, by also enforcing this at the block layer, it is easier to
verify that records (which are written into blocks) never have to
consider the possibility of empty keys.

Signed-off-by: Han-Wen Nienhuys <hanwen@google.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2022-02-23 13:36:26 -08:00
Han-Wen Nienhuys 66c0dabab5 reftable: make reftable_record a tagged union
This reduces the amount of glue code, because we don't need a void
pointer or vtable within the structure.

The only snag is that reftable_index_record contain a strbuf, so it
cannot be zero-initialized. To address this, use reftable_new_record()
to return fresh instance, given a record type. Since
reftable_new_record() doesn't cause heap allocation anymore, it should
be balanced with reftable_record_release() rather than
reftable_record_destroy().

Thanks to Peff for the suggestion.

Helped-by: Jeff King <peff@peff.net>
Signed-off-by: Han-Wen Nienhuys <hanwen@google.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2022-01-20 11:31:53 -08:00
Han-Wen Nienhuys 24d4d38c0b reftable: fix resource leak in block.c error path
Add test coverage for corrupt zlib data. Fix memory leaks demonstrated by
unittest.

This problem was discovered by a Coverity scan.

Signed-off-by: Han-Wen Nienhuys <hanwen@google.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2022-01-20 11:31:52 -08:00
Han-Wen Nienhuys e581fd7231 reftable: reading/writing blocks
The reftable format is structured as a sequence of block. Within a block,
records are prefix compressed, with an index of offsets for fully expand keys to
enable binary search within blocks.

This commit provides the logic to read and write these blocks.

Helped-by: Carlo Marcelo Arenas Belón <carenas@gmail.com>
Signed-off-by: Han-Wen Nienhuys <hanwen@google.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-10-08 10:45:48 -07:00