Commit graph

15 commits

Author SHA1 Message Date
brian m. carlson
e6a492b7be pack: convert struct pack_idx_entry to struct object_id
Convert struct pack_idx_entry to use struct object_id by changing the
definition and applying the following semantic patch, plus the standard
object_id transforms:

@@
struct pack_idx_entry E1;
@@
- E1.sha1
+ E1.oid.hash

@@
struct pack_idx_entry *E1;
@@
- E1->sha1
+ E1->oid.hash

Signed-off-by: brian m. carlson <sandals@crustytoothpaste.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2017-05-08 15:12:57 +09:00
Jeff King
594fa9998c odb_mkstemp: write filename into strbuf
The odb_mkstemp() function expects the caller to provide a
fixed buffer to write the resulting tempfile name into. But
it creates the template using snprintf without checking the
return value. This means we could silently truncate the
filename.

In practice, it's unlikely that the truncation would end in
the template-pattern that mkstemp needs to open the file. So
we'd probably end up failing either way, unless the path was
specially crafted.

The simplest fix would be to notice the truncation and die.
However, we can observe that most callers immediately
xstrdup() the result anyway. So instead, let's switch to
using a strbuf, which is easier for them (and isn't a big
deal for the other 2 callers, who can just strbuf_release
when they're done with it).

Note that many of the callers used static buffers, but this
was purely to avoid putting a large buffer on the stack. We
never passed the static buffers out of the function, so
there's no complicated memory handling we need to change.

Signed-off-by: Jeff King <peff@peff.net>
2017-03-28 15:28:04 -07:00
Jeff King
892e723afd do not check odb_mkstemp return value for errors
The odb_mkstemp function does not return an error; it dies
on failure instead. But many of its callers compare the
resulting descriptor against -1 and die themselves.

Mostly this is just pointless, but it does raise a question
when looking at the callers: if they show the results of the
"template" buffer after a failure, what's in it? The answer
is: it doesn't matter, because it cannot happen.

So let's make that clear by removing the bogus error checks.
In bitmap_writer_finish(), we can drop the error-handling
code entirely. In the other two cases, it's shared with the
open() in another code path; we can just move the
error-check next to that open() call.

And while we're at it, let's flesh out the function's
docstring a bit to make the error behavior clear.

Signed-off-by: Jeff King <peff@peff.net>
2017-03-28 15:28:04 -07:00
René Scharfe
9ed0d8d6e6 use QSORT
Apply the semantic patch contrib/coccinelle/qsort.cocci to the code
base, replacing calls of qsort(3) with QSORT.  The resulting code is
shorter and supports empty arrays with NULL pointers.

Signed-off-by: Rene Scharfe <l.s.r@web.de>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-09-29 15:42:18 -07:00
Jeff King
de1e67d070 list-objects: pass full pathname to callbacks
When we find a blob at "a/b/c", we currently pass this to
our show_object_fn callbacks as two components: "a/b/" and
"c". Callbacks which want the full value then call
path_name(), which concatenates the two. But this is an
inefficient interface; the path is a strbuf, and we could
simply append "c" to it temporarily, then roll back the
length, without creating a new copy.

So we could improve this by teaching the callsites of
path_name() this trick (and there are only 3). But we can
also notice that no callback actually cares about the
broken-down representation, and simply pass each callback
the full path "a/b/c" as a string. The callback code becomes
even simpler, then, as we do not have to worry about freeing
an allocated buffer, nor rolling back our modification to
the strbuf.

This is theoretically less efficient, as some callbacks
would not bother to format the final path component. But in
practice this is not measurable. Since we use the same
strbuf over and over, our work to grow it is amortized, and
we really only pay to memcpy a few bytes.

Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-02-12 12:51:17 -08:00
Jeff King
bd64516aca list-objects: drop name_path entirely
In the previous commit, we left name_path as a thin wrapper
around a strbuf. This patch drops it entirely. As a result,
every show_object_fn callback needs to be adjusted. However,
none of their code needs to be changed at all, because the
only use was to pass it to path_name(), which now handles
the bare strbuf.

Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-02-12 12:51:15 -08:00
brian m. carlson
ed1c9977cb Remove get_object_hash.
Convert all instances of get_object_hash to use an appropriate reference
to the hash member of the oid member of struct object.  This provides no
functional change, as it is essentially a macro substitution.

Signed-off-by: brian m. carlson <sandals@crustytoothpaste.net>
Signed-off-by: Jeff King <peff@peff.net>
2015-11-20 08:02:05 -05:00
brian m. carlson
f2fd0760f6 Convert struct object to object_id
struct object is one of the major data structures dealing with object
IDs.  Convert it to use struct object_id instead of an unsigned char
array.  Convert get_object_hash to refer to the new member as well.

Signed-off-by: brian m. carlson <sandals@crustytoothpaste.net>
Signed-off-by: Jeff King <peff@peff.net>
2015-11-20 08:02:05 -05:00
brian m. carlson
7999b2cf77 Add several uses of get_object_hash.
Convert most instances where the sha1 member of struct object is
dereferenced to use get_object_hash.  Most instances that are passed to
functions that have versions taking struct object_id, such as
get_sha1_hex/get_oid_hex, or instances that can be trivially converted
to use struct object_id instead, are not converted.

Signed-off-by: brian m. carlson <sandals@crustytoothpaste.net>
Signed-off-by: Jeff King <peff@peff.net>
2015-11-20 08:02:05 -05:00
Junio C Hamano
3889e7a60c Merge branch 'jk/pack-bitmap'
* jk/pack-bitmap:
  pack-bitmap: do not use gcc packed attribute
2014-12-12 14:31:42 -08:00
Karsten Blees
b5007211b6 pack-bitmap: do not use gcc packed attribute
The "__attribute__" flag may be a noop on some compilers.
That's OK as long as the code is correct without the
attribute, but in this case it is not. We would typically
end up with a struct that is 2 bytes too long due to struct
padding, breaking both reading and writing of bitmaps.

Instead of marshalling the data in a struct, let's just
provide helpers for reading and writing the appropriate
types. Besides being correct on all platforms, the result is
more efficient and simpler to read.

Signed-off-by: Karsten Blees <blees@dcon.de>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2014-11-30 18:07:34 -08:00
René Scharfe
2756ca4347 use REALLOC_ARRAY for changing the allocation size of arrays
Signed-off-by: Rene Scharfe <l.s.r@web.de>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2014-09-18 09:13:42 -07:00
Sun He
50546b15ed Use hashcpy() when copying object names
We invented hashcpy() to keep the abstraction of "object name"
behind it.  Use it instead of calling memcpy() with hard-coded
20-byte length when moving object names between pieces of memory.

Leave ppc/sha1.c as-is, because the function is about the SHA-1 hash
algorithm whose output is and will always be 20 bytes.

Helped-by: Michael Haggerty <mhagger@alum.mit.edu>
Helped-by: Duy Nguyen <pclouds@gmail.com>
Signed-off-by: Sun He <sunheehnus@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2014-03-06 14:03:12 -08:00
Vicent Marti
ae4f07fbcc pack-bitmap: implement optional name_hash cache
When we use pack bitmaps rather than walking the object
graph, we end up with the list of objects to include in the
packfile, but we do not know the path at which any tree or
blob objects would be found.

In a recently packed repository, this is fine. A fetch would
use the paths only as a heuristic in the delta compression
phase, and a fully packed repository should not need to do
much delta compression.

As time passes, though, we may acquire more objects on top
of our large bitmapped pack. If clients fetch frequently,
then they never even look at the bitmapped history, and all
works as usual. However, a client who has not fetched since
the last bitmap repack will have "have" tips in the
bitmapped history, but "want" newer objects.

The bitmaps themselves degrade gracefully in this
circumstance. We manually walk the more recent bits of
history, and then use bitmaps when we hit them.

But we would also like to perform delta compression between
the newer objects and the bitmapped objects (both to delta
against what we know the user already has, but also between
"new" and "old" objects that the user is fetching). The lack
of pathnames makes our delta heuristics much less effective.

This patch adds an optional cache of the 32-bit name_hash
values to the end of the bitmap file. If present, a reader
can use it to match bitmapped and non-bitmapped names during
delta compression.

Here are perf results for p5310:

Test                      origin/master       HEAD^                      HEAD
-------------------------------------------------------------------------------------------------
5310.2: repack to disk    36.81(37.82+1.43)   47.70(48.74+1.41) +29.6%   47.75(48.70+1.51) +29.7%
5310.3: simulated clone   30.78(29.70+2.14)   1.08(0.97+0.10) -96.5%     1.07(0.94+0.12) -96.5%
5310.4: simulated fetch   3.16(6.10+0.08)     3.54(10.65+0.06) +12.0%    1.70(3.07+0.06) -46.2%
5310.6: partial bitmap    36.76(43.19+1.81)   6.71(11.25+0.76) -81.7%    4.08(6.26+0.46) -88.9%

You can see that the time spent on an incremental fetch goes
down, as our delta heuristics are able to do their work.
And we save time on the partial bitmap clone for the same
reason.

Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-30 12:19:23 -08:00
Vicent Marti
7cc8f97108 pack-objects: implement bitmap writing
This commit extends more the functionality of `pack-objects` by allowing
it to write out a `.bitmap` index next to any written packs, together
with the `.idx` index that currently gets written.

If bitmap writing is enabled for a given repository (either by calling
`pack-objects` with the `--write-bitmap-index` flag or by having
`pack.writebitmaps` set to `true` in the config) and pack-objects is
writing a packfile that would normally be indexed (i.e. not piping to
stdout), we will attempt to write the corresponding bitmap index for the
packfile.

Bitmap index writing happens after the packfile and its index has been
successfully written to disk (`finish_tmp_packfile`). The process is
performed in several steps:

    1. `bitmap_writer_set_checksum`: this call stores the partial
       checksum for the packfile being written; the checksum will be
       written in the resulting bitmap index to verify its integrity

    2. `bitmap_writer_build_type_index`: this call uses the array of
       `struct object_entry` that has just been sorted when writing out
       the actual packfile index to disk to generate 4 type-index bitmaps
       (one for each object type).

       These bitmaps have their nth bit set if the given object is of
       the bitmap's type. E.g. the nth bit of the Commits bitmap will be
       1 if the nth object in the packfile index is a commit.

       This is a very cheap operation because the bitmap writing code has
       access to the metadata stored in the `struct object_entry` array,
       and hence the real type for each object in the packfile.

    3. `bitmap_writer_reuse_bitmaps`: if there exists an existing bitmap
       index for one of the packfiles we're trying to repack, this call
       will efficiently rebuild the existing bitmaps so they can be
       reused on the new index. All the existing bitmaps will be stored
       in a `reuse` hash table, and the commit selection phase will
       prioritize these when selecting, as they can be written directly
       to the new index without having to perform a revision walk to
       fill the bitmap. This can greatly speed up the repack of a
       repository that already has bitmaps.

    4. `bitmap_writer_select_commits`: if bitmap writing is enabled for
       a given `pack-objects` run, the sequence of commits generated
       during the Counting Objects phase will be stored in an array.

       We then use that array to build up the list of selected commits.
       Writing a bitmap in the index for each object in the repository
       would be cost-prohibitive, so we use a simple heuristic to pick
       the commits that will be indexed with bitmaps.

       The current heuristics are a simplified version of JGit's
       original implementation. We select a higher density of commits
       depending on their age: the 100 most recent commits are always
       selected, after that we pick 1 commit of each 100, and the gap
       increases as the commits grow older. On top of that, we make sure
       that every single branch that has not been merged (all the tips
       that would be required from a clone) gets their own bitmap, and
       when selecting commits between a gap, we tend to prioritize the
       commit with the most parents.

       Do note that there is no right/wrong way to perform commit
       selection; different selection algorithms will result in
       different commits being selected, but there's no such thing as
       "missing a commit". The bitmap walker algorithm implemented in
       `prepare_bitmap_walk` is able to adapt to missing bitmaps by
       performing manual walks that complete the bitmap: the ideal
       selection algorithm, however, would select the commits that are
       more likely to be used as roots for a walk in the future (e.g.
       the tips of each branch, and so on) to ensure a bitmap for them
       is always available.

    5. `bitmap_writer_build`: this is the computationally expensive part
       of bitmap generation. Based on the list of commits that were
       selected in the previous step, we perform several incremental
       walks to generate the bitmap for each commit.

       The walks begin from the oldest commit, and are built up
       incrementally for each branch. E.g. consider this dag where A, B,
       C, D, E, F are the selected commits, and a, b, c, e are a chunk
       of simplified history that will not receive bitmaps.

            A---a---B--b--C--c--D
                     \
                      E--e--F

       We start by building the bitmap for A, using A as the root for a
       revision walk and marking all the objects that are reachable
       until the walk is over. Once this bitmap is stored, we reuse the
       bitmap walker to perform the walk for B, assuming that once we
       reach A again, the walk will be terminated because A has already
       been SEEN on the previous walk.

       This process is repeated for C, and D, but when we try to
       generate the bitmaps for E, we can reuse neither the current walk
       nor the bitmap we have generated so far.

       What we do now is resetting both the walk and clearing the
       bitmap, and performing the walk from scratch using E as the
       origin. This new walk, however, does not need to be completed.
       Once we hit B, we can lookup the bitmap we have already stored
       for that commit and OR it with the existing bitmap we've composed
       so far, allowing us to limit the walk early.

       After all the bitmaps have been generated, another iteration
       through the list of commits is performed to find the best XOR
       offsets for compression before writing them to disk. Because of
       the incremental nature of these bitmaps, XORing one of them with
       its predecesor results in a minimal "bitmap delta" most of the
       time. We can write this delta to the on-disk bitmap index, and
       then re-compose the original bitmaps by XORing them again when
       loaded.

       This is a phase very similar to pack-object's `find_delta` (using
       bitmaps instead of objects, of course), except the heuristics
       have been greatly simplified: we only check the 10 bitmaps before
       any given one to find best compressing one. This gives good
       results in practice, because there is locality in the ordering of
       the objects (and therefore bitmaps) in the packfile.

     6. `bitmap_writer_finish`: the last step in the process is
	serializing to disk all the bitmap data that has been generated
	in the two previous steps.

	The bitmap is written to a tmp file and then moved atomically to
	its final destination, using the same process as
	`pack-write.c:write_idx_file`.

Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-30 12:19:22 -08:00