git/pkt-line.h

255 lines
9 KiB
C
Raw Normal View History

#ifndef PKTLINE_H
#define PKTLINE_H
#include "strbuf.h"
/*
* Write a packetized stream, where each line is preceded by
* its length (including the header) as a 4-byte hex number.
* A length of 'zero' means end of stream (and a length of 1-3
* would be an error).
*
* This is all pretty stupid, but we use this packetized line
* format to make a streaming format possible without ever
* over-running the read buffers. That way we'll never read
* into what might be the pack data (which should go to another
* process entirely).
*
* The writing side could use stdio, but since the reading
* side can't, we stay with pure read/write interfaces.
*/
void packet_flush(int fd);
void packet_delim(int fd);
void packet_response_end(int fd);
void packet_write_fmt(int fd, const char *fmt, ...) __attribute__((format (printf, 2, 3)));
void packet_buf_flush(struct strbuf *buf);
void packet_buf_delim(struct strbuf *buf);
void set_packet_header(char *buf, int size);
void packet_write(int fd_out, const char *buf, size_t size);
void packet_buf_write(struct strbuf *buf, const char *fmt, ...) __attribute__((format (printf, 2, 3)));
int packet_flush_gently(int fd);
int packet_write_fmt_gently(int fd, const char *fmt, ...) __attribute__((format (printf, 2, 3)));
int write_packetized_from_fd_no_flush(int fd_in, int fd_out);
int write_packetized_from_buf_no_flush_count(const char *src_in, size_t len,
int fd_out, int *packet_counter);
static inline int write_packetized_from_buf_no_flush(const char *src_in,
size_t len, int fd_out)
{
return write_packetized_from_buf_no_flush_count(src_in, len, fd_out, NULL);
}
/*
* Stdio versions of packet_write functions. When mixing these with fd
* based functions, take care to call fflush(3) before doing fd writes or
* closing the fd.
*/
void packet_fwrite(FILE *f, const char *buf, size_t size);
void packet_fwrite_fmt(FILE *f, const char *fmt, ...) __attribute__((format (printf, 2, 3)));
/* packet_fflush writes a flush packet and flushes the stdio buffer of f */
void packet_fflush(FILE *f);
/*
pkt-line: share buffer/descriptor reading implementation The packet_read function reads from a descriptor. The packet_get_line function is similar, but reads from an in-memory buffer, and uses a completely separate implementation. This patch teaches the generic packet_read function to accept either source, and we can do away with packet_get_line's implementation. There are two other differences to account for between the old and new functions. The first is that we used to read into a strbuf, but now read into a fixed size buffer. The only two callers are fine with that, and in fact it simplifies their code, since they can use the same static-buffer interface as the rest of the packet_read_line callers (and we provide a similar convenience wrapper for reading from a buffer rather than a descriptor). This is technically an externally-visible behavior change in that we used to accept arbitrary sized packets up to 65532 bytes, and now cap out at LARGE_PACKET_MAX, 65520. In practice this doesn't matter, as we use it only for parsing smart-http headers (of which there is exactly one defined, and it is small and fixed-size). And any extension headers would be breaking the protocol to go over LARGE_PACKET_MAX anyway. The other difference is that packet_get_line would return on error rather than dying. However, both callers of packet_get_line are actually improved by dying. The first caller does its own error checking, but we can drop that; as a result, we'll actually get more specific reporting about protocol breakage when packet_read dies internally. The only downside is that packet_read will not print the smart-http URL that failed, but that's not a big deal; anybody not debugging can already see the remote's URL already, and anybody debugging would want to run with GIT_CURL_VERBOSE anyway to see way more information. The second caller, which is just trying to skip past any extra smart-http headers (of which there are none defined, but which we allow to keep room for future expansion), did not error check at all. As a result, it would treat an error just like a flush packet. The resulting mess would generally cause an error later in get_remote_heads, but now we get error reporting much closer to the source of the problem. Brown-paper-bag-fixes-by: Ramsay Jones <ramsay@ramsay1.demon.co.uk> Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-02-23 22:31:34 +00:00
* Read a packetized line into the buffer, which must be at least size bytes
* long. The return value specifies the number of bytes read into the buffer.
*
* If options does not contain PACKET_READ_GENTLE_ON_EOF, we will die under any
* of the following conditions:
*
* 1. Read error from descriptor.
*
* 2. Protocol error from the remote (e.g., bogus length characters).
*
* 3. Receiving a packet larger than "size" bytes.
*
* 4. Truncated output from the remote (e.g., we expected a packet but got
* EOF, or we got a partial packet followed by EOF).
*
* If options does contain PACKET_READ_GENTLE_ON_EOF, we will not die on
* condition 4 (truncated input), but instead return -1. However, we will still
* die for the other 3 conditions.
pkt-line: teach packet_read_line to chomp newlines The packets sent during ref negotiation are all terminated by newline; even though the code to chomp these newlines is short, we end up doing it in a lot of places. This patch teaches packet_read_line to auto-chomp the trailing newline; this lets us get rid of a lot of inline chomping code. As a result, some call-sites which are not reading line-oriented data (e.g., when reading chunks of packfiles alongside sideband) transition away from packet_read_line to the generic packet_read interface. This patch converts all of the existing callsites. Since the function signature of packet_read_line does not change (but its behavior does), there is a possibility of new callsites being introduced in later commits, silently introducing an incompatibility. However, since a later patch in this series will change the signature, such a commit would have to be merged directly into this commit, not to the tip of the series; we can therefore ignore the issue. This is an internal cleanup and should produce no change of behavior in the normal case. However, there is one corner case to note. Callers of packet_read_line have never been able to tell the difference between a flush packet ("0000") and an empty packet ("0004"), as both cause packet_read_line to return a length of 0. Readers treat them identically, even though Documentation/technical/protocol-common.txt says we must not; it also says that implementations should not send an empty pkt-line. By stripping out the newline before the result gets to the caller, we will now treat the newline-only packet ("0005\n") the same as an empty packet, which in turn gets treated like a flush packet. In practice this doesn't matter, as neither empty nor newline-only packets are part of git's protocols (at least not for the line-oriented bits, and readers who are not expecting line-oriented packets will be calling packet_read directly, anyway). But even if we do decide to care about the distinction later, it is orthogonal to this patch. The right place to tighten would be to stop treating empty packets as flush packets, and this change does not make doing so any harder. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-02-20 20:02:28 +00:00
*
* If options contains PACKET_READ_CHOMP_NEWLINE, a trailing newline (if
* present) is removed from the buffer before returning.
*
* If options contains PACKET_READ_DIE_ON_ERR_PACKET, it dies when it sees an
* ERR packet.
*
* If options contains PACKET_READ_GENTLE_ON_READ_ERROR, we will not die
* on read errors, but instead return -1. However, we may still die on an
* ERR packet (if requested).
*/
#define PACKET_READ_GENTLE_ON_EOF (1u<<0)
#define PACKET_READ_CHOMP_NEWLINE (1u<<1)
#define PACKET_READ_DIE_ON_ERR_PACKET (1u<<2)
#define PACKET_READ_GENTLE_ON_READ_ERROR (1u<<3)
#define PACKET_READ_REDACT_URI_PATH (1u<<4)
#define PACKET_READ_USE_SIDEBAND (1u<<5)
int packet_read(int fd, char *buffer, unsigned size, int options);
/*
* Convert a four hex digit packet line length header into its numeric
* representation.
*
* If lenbuf_hex contains non-hex characters, return -1. Otherwise, return the
* numeric value of the length header.
*/
int packet_length(const char lenbuf_hex[4], size_t size);
/*
* Read a packetized line into a buffer like the 'packet_read()' function but
* returns an 'enum packet_read_status' which indicates the status of the read.
* The number of bytes read will be assigned to *pktlen if the status of the
* read was 'PACKET_READ_NORMAL'.
*
* If src_buffer and *src_buffer are not NULL, it should point to a buffer
* containing the packet data to parse, of at least *src_len bytes. After the
* function returns, src_buf will be incremented and src_len decremented by the
* number of bytes consumed.
*
* If src_buffer (or *src_buffer) is NULL, then data is read from the
* descriptor "fd".
*/
enum packet_read_status {
PACKET_READ_EOF,
PACKET_READ_NORMAL,
PACKET_READ_FLUSH,
PACKET_READ_DELIM,
PACKET_READ_RESPONSE_END,
};
enum packet_read_status packet_read_with_status(int fd, char **src_buffer,
size_t *src_len, char *buffer,
unsigned size, int *pktlen,
int options);
pkt-line: teach packet_read_line to chomp newlines The packets sent during ref negotiation are all terminated by newline; even though the code to chomp these newlines is short, we end up doing it in a lot of places. This patch teaches packet_read_line to auto-chomp the trailing newline; this lets us get rid of a lot of inline chomping code. As a result, some call-sites which are not reading line-oriented data (e.g., when reading chunks of packfiles alongside sideband) transition away from packet_read_line to the generic packet_read interface. This patch converts all of the existing callsites. Since the function signature of packet_read_line does not change (but its behavior does), there is a possibility of new callsites being introduced in later commits, silently introducing an incompatibility. However, since a later patch in this series will change the signature, such a commit would have to be merged directly into this commit, not to the tip of the series; we can therefore ignore the issue. This is an internal cleanup and should produce no change of behavior in the normal case. However, there is one corner case to note. Callers of packet_read_line have never been able to tell the difference between a flush packet ("0000") and an empty packet ("0004"), as both cause packet_read_line to return a length of 0. Readers treat them identically, even though Documentation/technical/protocol-common.txt says we must not; it also says that implementations should not send an empty pkt-line. By stripping out the newline before the result gets to the caller, we will now treat the newline-only packet ("0005\n") the same as an empty packet, which in turn gets treated like a flush packet. In practice this doesn't matter, as neither empty nor newline-only packets are part of git's protocols (at least not for the line-oriented bits, and readers who are not expecting line-oriented packets will be calling packet_read directly, anyway). But even if we do decide to care about the distinction later, it is orthogonal to this patch. The right place to tighten would be to stop treating empty packets as flush packets, and this change does not make doing so any harder. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-02-20 20:02:28 +00:00
/*
* Convenience wrapper for packet_read that is not gentle, and sets the
pkt-line: provide a LARGE_PACKET_MAX static buffer Most of the callers of packet_read_line just read into a static 1000-byte buffer (callers which handle arbitrary binary data already use LARGE_PACKET_MAX). This works fine in practice, because: 1. The only variable-sized data in these lines is a ref name, and refs tend to be a lot shorter than 1000 characters. 2. When sending ref lines, git-core always limits itself to 1000 byte packets. However, the only limit given in the protocol specification in Documentation/technical/protocol-common.txt is LARGE_PACKET_MAX; the 1000 byte limit is mentioned only in pack-protocol.txt, and then only describing what we write, not as a specific limit for readers. This patch lets us bump the 1000-byte limit to LARGE_PACKET_MAX. Even though git-core will never write a packet where this makes a difference, there are two good reasons to do this: 1. Other git implementations may have followed protocol-common.txt and used a larger maximum size. We don't bump into it in practice because it would involve very long ref names. 2. We may want to increase the 1000-byte limit one day. Since packets are transferred before any capabilities, it's difficult to do this in a backwards-compatible way. But if we bump the size of buffer the readers can handle, eventually older versions of git will be obsolete enough that we can justify bumping the writers, as well. We don't have plans to do this anytime soon, but there is no reason not to start the clock ticking now. Just bumping all of the reading bufs to LARGE_PACKET_MAX would waste memory. Instead, since most readers just read into a temporary buffer anyway, let's provide a single static buffer that all callers can use. We can further wrap this detail away by having the packet_read_line wrapper just use the buffer transparently and return a pointer to the static storage. That covers most of the cases, and the remaining ones already read into their own LARGE_PACKET_MAX buffers. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-02-20 20:02:57 +00:00
* CHOMP_NEWLINE option. The return value is NULL for a flush packet,
* and otherwise points to a static buffer (that may be overwritten by
* subsequent calls). If the size parameter is not NULL, the length of the
* packet is written to it.
pkt-line: teach packet_read_line to chomp newlines The packets sent during ref negotiation are all terminated by newline; even though the code to chomp these newlines is short, we end up doing it in a lot of places. This patch teaches packet_read_line to auto-chomp the trailing newline; this lets us get rid of a lot of inline chomping code. As a result, some call-sites which are not reading line-oriented data (e.g., when reading chunks of packfiles alongside sideband) transition away from packet_read_line to the generic packet_read interface. This patch converts all of the existing callsites. Since the function signature of packet_read_line does not change (but its behavior does), there is a possibility of new callsites being introduced in later commits, silently introducing an incompatibility. However, since a later patch in this series will change the signature, such a commit would have to be merged directly into this commit, not to the tip of the series; we can therefore ignore the issue. This is an internal cleanup and should produce no change of behavior in the normal case. However, there is one corner case to note. Callers of packet_read_line have never been able to tell the difference between a flush packet ("0000") and an empty packet ("0004"), as both cause packet_read_line to return a length of 0. Readers treat them identically, even though Documentation/technical/protocol-common.txt says we must not; it also says that implementations should not send an empty pkt-line. By stripping out the newline before the result gets to the caller, we will now treat the newline-only packet ("0005\n") the same as an empty packet, which in turn gets treated like a flush packet. In practice this doesn't matter, as neither empty nor newline-only packets are part of git's protocols (at least not for the line-oriented bits, and readers who are not expecting line-oriented packets will be calling packet_read directly, anyway). But even if we do decide to care about the distinction later, it is orthogonal to this patch. The right place to tighten would be to stop treating empty packets as flush packets, and this change does not make doing so any harder. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-02-20 20:02:28 +00:00
*/
pkt-line: provide a LARGE_PACKET_MAX static buffer Most of the callers of packet_read_line just read into a static 1000-byte buffer (callers which handle arbitrary binary data already use LARGE_PACKET_MAX). This works fine in practice, because: 1. The only variable-sized data in these lines is a ref name, and refs tend to be a lot shorter than 1000 characters. 2. When sending ref lines, git-core always limits itself to 1000 byte packets. However, the only limit given in the protocol specification in Documentation/technical/protocol-common.txt is LARGE_PACKET_MAX; the 1000 byte limit is mentioned only in pack-protocol.txt, and then only describing what we write, not as a specific limit for readers. This patch lets us bump the 1000-byte limit to LARGE_PACKET_MAX. Even though git-core will never write a packet where this makes a difference, there are two good reasons to do this: 1. Other git implementations may have followed protocol-common.txt and used a larger maximum size. We don't bump into it in practice because it would involve very long ref names. 2. We may want to increase the 1000-byte limit one day. Since packets are transferred before any capabilities, it's difficult to do this in a backwards-compatible way. But if we bump the size of buffer the readers can handle, eventually older versions of git will be obsolete enough that we can justify bumping the writers, as well. We don't have plans to do this anytime soon, but there is no reason not to start the clock ticking now. Just bumping all of the reading bufs to LARGE_PACKET_MAX would waste memory. Instead, since most readers just read into a temporary buffer anyway, let's provide a single static buffer that all callers can use. We can further wrap this detail away by having the packet_read_line wrapper just use the buffer transparently and return a pointer to the static storage. That covers most of the cases, and the remaining ones already read into their own LARGE_PACKET_MAX buffers. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-02-20 20:02:57 +00:00
char *packet_read_line(int fd, int *size);
/*
* Convenience wrapper for packet_read that sets the PACKET_READ_GENTLE_ON_EOF
* and CHOMP_NEWLINE options. The return value specifies the number of bytes
* read into the buffer or -1 on truncated input. If the *dst_line parameter
* is not NULL it will return NULL for a flush packet or when the number of
* bytes copied is zero and otherwise points to a static buffer (that may be
* overwritten by subsequent calls). If the size parameter is not NULL, the
* length of the packet is written to it.
*/
int packet_read_line_gently(int fd, int *size, char **dst_line);
/*
* Reads a stream of variable sized packets until a flush packet is detected.
*/
ssize_t read_packetized_to_strbuf(int fd_in, struct strbuf *sb_out, int options);
/*
* Receive multiplexed output stream over git native protocol.
* in_stream is the input stream from the remote, which carries data
* in pkt_line format with band designator. Demultiplex it into out
* and err and return error appropriately. Band #1 carries the
* primary payload. Things coming over band #2 is not necessarily
* error; they are usually informative message on the standard error
* stream, aka "verbose"). A message over band #3 is a signal that
* the remote died unexpectedly. A flush() concludes the stream.
*
* Returns SIDEBAND_FLUSH upon a normal conclusion, and SIDEBAND_PROTOCOL_ERROR
* or SIDEBAND_REMOTE_ERROR if an error occurred.
*/
int recv_sideband(const char *me, int in_stream, int out);
struct packet_reader {
/* source file descriptor */
int fd;
/* source buffer and its size */
char *src_buffer;
size_t src_len;
/* buffer that pkt-lines are read into and its size */
char *buffer;
unsigned buffer_size;
/* options to be used during reads */
int options;
/* status of the last read */
enum packet_read_status status;
/* length of data read during the last read */
int pktlen;
/* the last line read */
const char *line;
/* indicates if a line has been peeked */
int line_peeked;
unsigned use_sideband : 1;
const char *me;
/* hash algorithm in use */
const struct git_hash_algo *hash_algo;
/* hold temporary sideband message */
struct strbuf scratch;
};
/*
* Initialize a 'struct packet_reader' object which is an
* abstraction around the 'packet_read_with_status()' function.
*/
void packet_reader_init(struct packet_reader *reader, int fd,
char *src_buffer, size_t src_len,
int options);
/*
* Perform a packet read and return the status of the read.
* The values of 'pktlen' and 'line' are updated based on the status of the
* read as follows:
*
* PACKET_READ_ERROR: 'pktlen' is set to '-1' and 'line' is set to NULL
* PACKET_READ_NORMAL: 'pktlen' is set to the number of bytes read
* 'line' is set to point at the read line
* PACKET_READ_FLUSH: 'pktlen' is set to '0' and 'line' is set to NULL
*/
enum packet_read_status packet_reader_read(struct packet_reader *reader);
/*
* Peek the next packet line without consuming it and return the status.
* The next call to 'packet_reader_read()' will perform a read of the same line
* that was peeked, consuming the line.
*
* Peeking multiple times without calling 'packet_reader_read()' will return
* the same result.
*/
enum packet_read_status packet_reader_peek(struct packet_reader *reader);
#define DEFAULT_PACKET_MAX 1000
#define LARGE_PACKET_MAX 65520
#define LARGE_PACKET_DATA_MAX (LARGE_PACKET_MAX - 4)
pkt-line: provide a LARGE_PACKET_MAX static buffer Most of the callers of packet_read_line just read into a static 1000-byte buffer (callers which handle arbitrary binary data already use LARGE_PACKET_MAX). This works fine in practice, because: 1. The only variable-sized data in these lines is a ref name, and refs tend to be a lot shorter than 1000 characters. 2. When sending ref lines, git-core always limits itself to 1000 byte packets. However, the only limit given in the protocol specification in Documentation/technical/protocol-common.txt is LARGE_PACKET_MAX; the 1000 byte limit is mentioned only in pack-protocol.txt, and then only describing what we write, not as a specific limit for readers. This patch lets us bump the 1000-byte limit to LARGE_PACKET_MAX. Even though git-core will never write a packet where this makes a difference, there are two good reasons to do this: 1. Other git implementations may have followed protocol-common.txt and used a larger maximum size. We don't bump into it in practice because it would involve very long ref names. 2. We may want to increase the 1000-byte limit one day. Since packets are transferred before any capabilities, it's difficult to do this in a backwards-compatible way. But if we bump the size of buffer the readers can handle, eventually older versions of git will be obsolete enough that we can justify bumping the writers, as well. We don't have plans to do this anytime soon, but there is no reason not to start the clock ticking now. Just bumping all of the reading bufs to LARGE_PACKET_MAX would waste memory. Instead, since most readers just read into a temporary buffer anyway, let's provide a single static buffer that all callers can use. We can further wrap this detail away by having the packet_read_line wrapper just use the buffer transparently and return a pointer to the static storage. That covers most of the cases, and the remaining ones already read into their own LARGE_PACKET_MAX buffers. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-02-20 20:02:57 +00:00
extern char packet_buffer[LARGE_PACKET_MAX];
struct packet_writer {
int dest_fd;
unsigned use_sideband : 1;
};
void packet_writer_init(struct packet_writer *writer, int dest_fd);
/* These functions die upon failure. */
__attribute__((format (printf, 2, 3)))
void packet_writer_write(struct packet_writer *writer, const char *fmt, ...);
__attribute__((format (printf, 2, 3)))
void packet_writer_error(struct packet_writer *writer, const char *fmt, ...);
void packet_writer_delim(struct packet_writer *writer);
void packet_writer_flush(struct packet_writer *writer);
void packet_trace_identity(const char *prog);
#endif