git/t/helper/test-date.c

136 lines
3 KiB
C
Raw Normal View History

#include "test-tool.h"
#include "date.h"
#include "trace.h"
static const char *usage_msg = "\n"
" test-tool date relative [time_t]...\n"
" test-tool date human [time_t]...\n"
" test-tool date show:<format> [time_t]...\n"
" test-tool date parse [date]...\n"
" test-tool date approxidate [date]...\n"
" test-tool date timestamp [date]...\n"
" test-tool date getnanos [start-nanos]\n"
" test-tool date is64bit\n"
" test-tool date time_t-is64bit\n";
static void show_relative_dates(const char **argv)
{
struct strbuf buf = STRBUF_INIT;
for (; *argv; argv++) {
time_t t = atoi(*argv);
show_date_relative(t, &buf);
printf("%s -> %s\n", *argv, buf.buf);
}
strbuf_release(&buf);
}
static void show_human_dates(const char **argv)
{
for (; *argv; argv++) {
time_t t = atoi(*argv);
printf("%s -> %s\n", *argv, show_date(t, 0, DATE_MODE(HUMAN)));
}
}
static void show_dates(const char **argv, const char *format)
{
struct date_mode mode = DATE_MODE_INIT;
parse_date_format(format, &mode);
for (; *argv; argv++) {
char *arg;
timestamp_t t;
int tz;
/*
* Do not use our normal timestamp parsing here, as the point
* is to test the formatting code in isolation.
*/
t = parse_timestamp(*argv, &arg, 10);
while (*arg == ' ')
arg++;
tz = atoi(arg);
printf("%s -> %s\n", *argv, show_date(t, tz, &mode));
}
date API: add and use a date_mode_release() Fix a memory leak in the parse_date_format() function by providing a new date_mode_release() companion function. By using this in "t/helper/test-date.c" we can mark the "t0006-date.sh" test as passing when git is compiled with SANITIZE=leak, and whitelist it to run under "GIT_TEST_PASSING_SANITIZE_LEAK=true" by adding "TEST_PASSES_SANITIZE_LEAK=true" to the test itself. The other tests that expose this memory leak (i.e. take the "mode->type == DATE_STRFTIME" branch in parse_date_format()) are "t6300-for-each-ref.sh" and "t7004-tag.sh". The former is due to an easily fixed leak in "ref-filter.c", and brings the failures in "t6300-for-each-ref.sh" down from 51 to 48. Fixing the remaining leaks will have to wait until there's a release_revisions() in "revision.c", as they have to do with leaks via "struct rev_info". There is also a leak in "builtin/blame.c" due to its call to parse_date_format() to parse the "blame.date" configuration. However as it declares a file-level "static struct date_mode blame_date_mode" to track the data, LSAN will not report it as a leak. It's possible to get valgrind(1) to complain about it with e.g.: valgrind --leak-check=full --show-leak-kinds=all ./git -P -c blame.date=format:%Y blame README.md But let's focus on things LSAN complains about, and are thus observable with "TEST_PASSES_SANITIZE_LEAK=true". We should get to fixing memory leaks in "builtin/blame.c", but as doing so would require some re-arrangement of cmd_blame() let's leave it for some other time. Signed-off-by: Ævar Arnfjörð Bjarmason <avarab@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2022-02-16 08:14:05 +00:00
date_mode_release(&mode);
}
static void parse_dates(const char **argv)
{
struct strbuf result = STRBUF_INIT;
for (; *argv; argv++) {
timestamp_t t;
int tz;
strbuf_reset(&result);
parse_date(*argv, &result);
if (sscanf(result.buf, "%"PRItime" %d", &t, &tz) == 2)
printf("%s -> %s\n",
convert "enum date_mode" into a struct In preparation for adding date modes that may carry extra information beyond the mode itself, this patch converts the date_mode enum into a struct. Most of the conversion is fairly straightforward; we pass the struct as a pointer and dereference the type field where necessary. Locations that declare a date_mode can use a "{}" constructor. However, the tricky case is where we use the enum labels as constants, like: show_date(t, tz, DATE_NORMAL); Ideally we could say: show_date(t, tz, &{ DATE_NORMAL }); but of course C does not allow that. Likewise, we cannot cast the constant to a struct, because we need to pass an actual address. Our options are basically: 1. Manually add a "struct date_mode d = { DATE_NORMAL }" definition to each caller, and pass "&d". This makes the callers uglier, because they sometimes do not even have their own scope (e.g., they are inside a switch statement). 2. Provide a pre-made global "date_normal" struct that can be passed by address. We'd also need "date_rfc2822", "date_iso8601", and so forth. But at least the ugliness is defined in one place. 3. Provide a wrapper that generates the correct struct on the fly. The big downside is that we end up pointing to a single global, which makes our wrapper non-reentrant. But show_date is already not reentrant, so it does not matter. This patch implements 3, along with a minor macro to keep the size of the callers sane. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2015-06-25 16:55:02 +00:00
*argv, show_date(t, tz, DATE_MODE(ISO8601)));
else
printf("%s -> bad\n", *argv);
}
strbuf_release(&result);
}
static void parse_approxidate(const char **argv)
{
for (; *argv; argv++) {
timestamp_t t;
t = approxidate(*argv);
convert "enum date_mode" into a struct In preparation for adding date modes that may carry extra information beyond the mode itself, this patch converts the date_mode enum into a struct. Most of the conversion is fairly straightforward; we pass the struct as a pointer and dereference the type field where necessary. Locations that declare a date_mode can use a "{}" constructor. However, the tricky case is where we use the enum labels as constants, like: show_date(t, tz, DATE_NORMAL); Ideally we could say: show_date(t, tz, &{ DATE_NORMAL }); but of course C does not allow that. Likewise, we cannot cast the constant to a struct, because we need to pass an actual address. Our options are basically: 1. Manually add a "struct date_mode d = { DATE_NORMAL }" definition to each caller, and pass "&d". This makes the callers uglier, because they sometimes do not even have their own scope (e.g., they are inside a switch statement). 2. Provide a pre-made global "date_normal" struct that can be passed by address. We'd also need "date_rfc2822", "date_iso8601", and so forth. But at least the ugliness is defined in one place. 3. Provide a wrapper that generates the correct struct on the fly. The big downside is that we end up pointing to a single global, which makes our wrapper non-reentrant. But show_date is already not reentrant, so it does not matter. This patch implements 3, along with a minor macro to keep the size of the callers sane. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2015-06-25 16:55:02 +00:00
printf("%s -> %s\n", *argv, show_date(t, 0, DATE_MODE(ISO8601)));
}
}
static void parse_approx_timestamp(const char **argv)
{
for (; *argv; argv++) {
timestamp_t t;
t = approxidate(*argv);
printf("%s -> %"PRItime"\n", *argv, t);
}
}
static void getnanos(const char **argv)
{
double seconds = getnanotime() / 1.0e9;
if (*argv)
seconds -= strtod(*argv, NULL);
printf("%lf\n", seconds);
}
int cmd__date(int argc UNUSED, const char **argv)
{
const char *x;
argv++;
if (!*argv)
usage(usage_msg);
if (!strcmp(*argv, "relative"))
show_relative_dates(argv+1);
else if (!strcmp(*argv, "human"))
show_human_dates(argv+1);
else if (skip_prefix(*argv, "show:", &x))
show_dates(argv+1, x);
else if (!strcmp(*argv, "parse"))
parse_dates(argv+1);
else if (!strcmp(*argv, "approxidate"))
parse_approxidate(argv+1);
else if (!strcmp(*argv, "timestamp"))
parse_approx_timestamp(argv+1);
else if (!strcmp(*argv, "getnanos"))
getnanos(argv+1);
else if (!strcmp(*argv, "is64bit"))
return sizeof(timestamp_t) == 8 ? 0 : 1;
else if (!strcmp(*argv, "time_t-is64bit"))
return sizeof(time_t) == 8 ? 0 : 1;
else
usage(usage_msg);
return 0;
}