git/t/t5530-upload-pack-error.sh

93 lines
2.1 KiB
Bash
Raw Normal View History

upload-pack: Use finish_{command,async}() instead of waitpid(). upload-pack spawns two processes, rev-list and pack-objects, and carefully monitors their status so that it can report failure to the remote end. This change removes the complicated procedures on the grounds of the following observations: - If everything is OK, rev-list closes its output pipe end, upon which pack-objects (which reads from the pipe) sees EOF and terminates itself, closing its output (and error) pipes. upload-pack reads from both until it sees EOF in both. It collects the exit codes of the child processes (which indicate success) and terminates successfully. - If rev-list sees an error, it closes its output and terminates with failure. pack-objects sees EOF in its input and terminates successfully. Again upload-pack reads its inputs until EOF. When it now collects the exit codes of its child processes, it notices the failure of rev-list and signals failure to the remote end. - If pack-objects sees an error, it terminates with failure. Since this breaks the pipe to rev-list, rev-list is killed with SIGPIPE. upload-pack reads its input until EOF, then collects the exit codes of the child processes, notices their failures, and signals failure to the remote end. - If upload-pack itself dies unexpectedly, pack-objects is killed with SIGPIPE, and subsequently also rev-list. The upshot of this is that precise monitoring of child processes is not required because both terminate if either one of them dies unexpectedly. This allows us to use finish_command() and finish_async() instead of an explicit waitpid(2) call. The change is smaller than it looks because most of it only reduces the indentation of a large part of the inner loop. Signed-off-by: Johannes Sixt <johannes.sixt@telecom.at> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2007-11-04 19:46:48 +00:00
#!/bin/sh
test_description='errors in upload-pack'
. ./test-lib.sh
D=`pwd`
corrupt_repo () {
object_sha1=$(git rev-parse "$1") &&
ob=$(expr "$object_sha1" : "\(..\)") &&
ject=$(expr "$object_sha1" : "..\(..*\)") &&
rm -f ".git/objects/$ob/$ject"
}
test_expect_success 'setup and corrupt repository' '
echo file >file &&
git add file &&
git rev-parse :file &&
git commit -a -m original &&
test_tick &&
echo changed >file &&
git commit -a -m changed &&
corrupt_repo HEAD:file
'
Sane use of test_expect_failure Originally, test_expect_failure was designed to be the opposite of test_expect_success, but this was a bad decision. Most tests run a series of commands that leads to the single command that needs to be tested, like this: test_expect_{success,failure} 'test title' ' setup1 && setup2 && setup3 && what is to be tested ' And expecting a failure exit from the whole sequence misses the point of writing tests. Your setup$N that are supposed to succeed may have failed without even reaching what you are trying to test. The only valid use of test_expect_failure is to check a trivial single command that is expected to fail, which is a minority in tests of Porcelain-ish commands. This large-ish patch rewrites all uses of test_expect_failure to use test_expect_success and rewrites the condition of what is tested, like this: test_expect_success 'test title' ' setup1 && setup2 && setup3 && ! this command should fail ' test_expect_failure is redefined to serve as a reminder that that test *should* succeed but due to a known breakage in git it currently does not pass. So if git-foo command should create a file 'bar' but you discovered a bug that it doesn't, you can write a test like this: test_expect_failure 'git-foo should create bar' ' rm -f bar && git foo && test -f bar ' This construct acts similar to test_expect_success, but instead of reporting "ok/FAIL" like test_expect_success does, the outcome is reported as "FIXED/still broken". Signed-off-by: Junio C Hamano <gitster@pobox.com>
2008-02-01 09:50:53 +00:00
test_expect_success 'fsck fails' '
test_must_fail git fsck
upload-pack: Use finish_{command,async}() instead of waitpid(). upload-pack spawns two processes, rev-list and pack-objects, and carefully monitors their status so that it can report failure to the remote end. This change removes the complicated procedures on the grounds of the following observations: - If everything is OK, rev-list closes its output pipe end, upon which pack-objects (which reads from the pipe) sees EOF and terminates itself, closing its output (and error) pipes. upload-pack reads from both until it sees EOF in both. It collects the exit codes of the child processes (which indicate success) and terminates successfully. - If rev-list sees an error, it closes its output and terminates with failure. pack-objects sees EOF in its input and terminates successfully. Again upload-pack reads its inputs until EOF. When it now collects the exit codes of its child processes, it notices the failure of rev-list and signals failure to the remote end. - If pack-objects sees an error, it terminates with failure. Since this breaks the pipe to rev-list, rev-list is killed with SIGPIPE. upload-pack reads its input until EOF, then collects the exit codes of the child processes, notices their failures, and signals failure to the remote end. - If upload-pack itself dies unexpectedly, pack-objects is killed with SIGPIPE, and subsequently also rev-list. The upshot of this is that precise monitoring of child processes is not required because both terminate if either one of them dies unexpectedly. This allows us to use finish_command() and finish_async() instead of an explicit waitpid(2) call. The change is smaller than it looks because most of it only reduces the indentation of a large part of the inner loop. Signed-off-by: Johannes Sixt <johannes.sixt@telecom.at> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2007-11-04 19:46:48 +00:00
'
test_expect_success 'upload-pack fails due to error in pack-objects packing' '
upload-pack: Use finish_{command,async}() instead of waitpid(). upload-pack spawns two processes, rev-list and pack-objects, and carefully monitors their status so that it can report failure to the remote end. This change removes the complicated procedures on the grounds of the following observations: - If everything is OK, rev-list closes its output pipe end, upon which pack-objects (which reads from the pipe) sees EOF and terminates itself, closing its output (and error) pipes. upload-pack reads from both until it sees EOF in both. It collects the exit codes of the child processes (which indicate success) and terminates successfully. - If rev-list sees an error, it closes its output and terminates with failure. pack-objects sees EOF in its input and terminates successfully. Again upload-pack reads its inputs until EOF. When it now collects the exit codes of its child processes, it notices the failure of rev-list and signals failure to the remote end. - If pack-objects sees an error, it terminates with failure. Since this breaks the pipe to rev-list, rev-list is killed with SIGPIPE. upload-pack reads its input until EOF, then collects the exit codes of the child processes, notices their failures, and signals failure to the remote end. - If upload-pack itself dies unexpectedly, pack-objects is killed with SIGPIPE, and subsequently also rev-list. The upshot of this is that precise monitoring of child processes is not required because both terminate if either one of them dies unexpectedly. This allows us to use finish_command() and finish_async() instead of an explicit waitpid(2) call. The change is smaller than it looks because most of it only reduces the indentation of a large part of the inner loop. Signed-off-by: Johannes Sixt <johannes.sixt@telecom.at> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2007-11-04 19:46:48 +00:00
printf "0032want %s\n00000009done\n0000" \
$(git rev-parse HEAD) >input &&
test_must_fail git upload-pack . <input >/dev/null 2>output.err &&
test_i18ngrep "unable to read" output.err &&
test_i18ngrep "pack-objects died" output.err
upload-pack: Use finish_{command,async}() instead of waitpid(). upload-pack spawns two processes, rev-list and pack-objects, and carefully monitors their status so that it can report failure to the remote end. This change removes the complicated procedures on the grounds of the following observations: - If everything is OK, rev-list closes its output pipe end, upon which pack-objects (which reads from the pipe) sees EOF and terminates itself, closing its output (and error) pipes. upload-pack reads from both until it sees EOF in both. It collects the exit codes of the child processes (which indicate success) and terminates successfully. - If rev-list sees an error, it closes its output and terminates with failure. pack-objects sees EOF in its input and terminates successfully. Again upload-pack reads its inputs until EOF. When it now collects the exit codes of its child processes, it notices the failure of rev-list and signals failure to the remote end. - If pack-objects sees an error, it terminates with failure. Since this breaks the pipe to rev-list, rev-list is killed with SIGPIPE. upload-pack reads its input until EOF, then collects the exit codes of the child processes, notices their failures, and signals failure to the remote end. - If upload-pack itself dies unexpectedly, pack-objects is killed with SIGPIPE, and subsequently also rev-list. The upshot of this is that precise monitoring of child processes is not required because both terminate if either one of them dies unexpectedly. This allows us to use finish_command() and finish_async() instead of an explicit waitpid(2) call. The change is smaller than it looks because most of it only reduces the indentation of a large part of the inner loop. Signed-off-by: Johannes Sixt <johannes.sixt@telecom.at> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2007-11-04 19:46:48 +00:00
'
test_expect_success 'corrupt repo differently' '
git hash-object -w file &&
corrupt_repo HEAD^^{tree}
'
Sane use of test_expect_failure Originally, test_expect_failure was designed to be the opposite of test_expect_success, but this was a bad decision. Most tests run a series of commands that leads to the single command that needs to be tested, like this: test_expect_{success,failure} 'test title' ' setup1 && setup2 && setup3 && what is to be tested ' And expecting a failure exit from the whole sequence misses the point of writing tests. Your setup$N that are supposed to succeed may have failed without even reaching what you are trying to test. The only valid use of test_expect_failure is to check a trivial single command that is expected to fail, which is a minority in tests of Porcelain-ish commands. This large-ish patch rewrites all uses of test_expect_failure to use test_expect_success and rewrites the condition of what is tested, like this: test_expect_success 'test title' ' setup1 && setup2 && setup3 && ! this command should fail ' test_expect_failure is redefined to serve as a reminder that that test *should* succeed but due to a known breakage in git it currently does not pass. So if git-foo command should create a file 'bar' but you discovered a bug that it doesn't, you can write a test like this: test_expect_failure 'git-foo should create bar' ' rm -f bar && git foo && test -f bar ' This construct acts similar to test_expect_success, but instead of reporting "ok/FAIL" like test_expect_success does, the outcome is reported as "FIXED/still broken". Signed-off-by: Junio C Hamano <gitster@pobox.com>
2008-02-01 09:50:53 +00:00
test_expect_success 'fsck fails' '
test_must_fail git fsck
upload-pack: Use finish_{command,async}() instead of waitpid(). upload-pack spawns two processes, rev-list and pack-objects, and carefully monitors their status so that it can report failure to the remote end. This change removes the complicated procedures on the grounds of the following observations: - If everything is OK, rev-list closes its output pipe end, upon which pack-objects (which reads from the pipe) sees EOF and terminates itself, closing its output (and error) pipes. upload-pack reads from both until it sees EOF in both. It collects the exit codes of the child processes (which indicate success) and terminates successfully. - If rev-list sees an error, it closes its output and terminates with failure. pack-objects sees EOF in its input and terminates successfully. Again upload-pack reads its inputs until EOF. When it now collects the exit codes of its child processes, it notices the failure of rev-list and signals failure to the remote end. - If pack-objects sees an error, it terminates with failure. Since this breaks the pipe to rev-list, rev-list is killed with SIGPIPE. upload-pack reads its input until EOF, then collects the exit codes of the child processes, notices their failures, and signals failure to the remote end. - If upload-pack itself dies unexpectedly, pack-objects is killed with SIGPIPE, and subsequently also rev-list. The upshot of this is that precise monitoring of child processes is not required because both terminate if either one of them dies unexpectedly. This allows us to use finish_command() and finish_async() instead of an explicit waitpid(2) call. The change is smaller than it looks because most of it only reduces the indentation of a large part of the inner loop. Signed-off-by: Johannes Sixt <johannes.sixt@telecom.at> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2007-11-04 19:46:48 +00:00
'
test_expect_success 'upload-pack fails due to error in rev-list' '
printf "0032want %s\n0034shallow %s00000009done\n0000" \
$(git rev-parse HEAD) $(git rev-parse HEAD^) >input &&
test_must_fail git upload-pack . <input >/dev/null 2>output.err &&
run_command: report system call errors instead of returning error codes The motivation for this change is that system call failures are serious errors that should be reported to the user, but only few callers took the burden to decode the error codes that the functions returned into error messages. If at all, then only an unspecific error message was given. A prominent example is this: $ git upload-pack . | : fatal: unable to run 'git-upload-pack' In this example, git-upload-pack, the external command invoked through the git wrapper, dies due to SIGPIPE, but the git wrapper does not bother to report the real cause. In fact, this very error message is copied to the syslog if git-daemon's client aborts the connection early. With this change, system call failures are reported immediately after the failure and only a generic failure code is returned to the caller. In the above example the error is now to the point: $ git upload-pack . | : error: git-upload-pack died of signal Note that there is no error report if the invoked program terminated with a non-zero exit code, because it is reasonable to expect that the invoked program has already reported an error. (But many run_command call sites nevertheless write a generic error message.) There was one special return code that was used to identify the case where run_command failed because the requested program could not be exec'd. This special case is now treated like a system call failure with errno set to ENOENT. No error is reported in this case, because the call site in git.c expects this as a normal result. Therefore, the callers that carefully decoded the return value still check for this condition. Signed-off-by: Johannes Sixt <j6t@kdbg.org> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2009-07-04 19:26:40 +00:00
grep "bad tree object" output.err
upload-pack: Use finish_{command,async}() instead of waitpid(). upload-pack spawns two processes, rev-list and pack-objects, and carefully monitors their status so that it can report failure to the remote end. This change removes the complicated procedures on the grounds of the following observations: - If everything is OK, rev-list closes its output pipe end, upon which pack-objects (which reads from the pipe) sees EOF and terminates itself, closing its output (and error) pipes. upload-pack reads from both until it sees EOF in both. It collects the exit codes of the child processes (which indicate success) and terminates successfully. - If rev-list sees an error, it closes its output and terminates with failure. pack-objects sees EOF in its input and terminates successfully. Again upload-pack reads its inputs until EOF. When it now collects the exit codes of its child processes, it notices the failure of rev-list and signals failure to the remote end. - If pack-objects sees an error, it terminates with failure. Since this breaks the pipe to rev-list, rev-list is killed with SIGPIPE. upload-pack reads its input until EOF, then collects the exit codes of the child processes, notices their failures, and signals failure to the remote end. - If upload-pack itself dies unexpectedly, pack-objects is killed with SIGPIPE, and subsequently also rev-list. The upshot of this is that precise monitoring of child processes is not required because both terminate if either one of them dies unexpectedly. This allows us to use finish_command() and finish_async() instead of an explicit waitpid(2) call. The change is smaller than it looks because most of it only reduces the indentation of a large part of the inner loop. Signed-off-by: Johannes Sixt <johannes.sixt@telecom.at> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2007-11-04 19:46:48 +00:00
'
test_expect_success 'upload-pack error message when bad ref requested' '
printf "0045want %s multi_ack_detailed\n00000009done\n0000" \
"deadbeefdeadbeefdeadbeefdeadbeefdeadbeef" >input &&
test_must_fail git upload-pack . <input >output 2>output.err &&
grep -q "not our ref" output.err &&
! grep -q multi_ack_detailed output.err
'
test_expect_success 'upload-pack fails due to error in pack-objects enumeration' '
printf "0032want %s\n00000009done\n0000" \
$(git rev-parse HEAD) >input &&
test_must_fail git upload-pack . <input >/dev/null 2>output.err &&
grep "bad tree object" output.err &&
grep "pack-objects died" output.err
'
upload-pack: Use finish_{command,async}() instead of waitpid(). upload-pack spawns two processes, rev-list and pack-objects, and carefully monitors their status so that it can report failure to the remote end. This change removes the complicated procedures on the grounds of the following observations: - If everything is OK, rev-list closes its output pipe end, upon which pack-objects (which reads from the pipe) sees EOF and terminates itself, closing its output (and error) pipes. upload-pack reads from both until it sees EOF in both. It collects the exit codes of the child processes (which indicate success) and terminates successfully. - If rev-list sees an error, it closes its output and terminates with failure. pack-objects sees EOF in its input and terminates successfully. Again upload-pack reads its inputs until EOF. When it now collects the exit codes of its child processes, it notices the failure of rev-list and signals failure to the remote end. - If pack-objects sees an error, it terminates with failure. Since this breaks the pipe to rev-list, rev-list is killed with SIGPIPE. upload-pack reads its input until EOF, then collects the exit codes of the child processes, notices their failures, and signals failure to the remote end. - If upload-pack itself dies unexpectedly, pack-objects is killed with SIGPIPE, and subsequently also rev-list. The upshot of this is that precise monitoring of child processes is not required because both terminate if either one of them dies unexpectedly. This allows us to use finish_command() and finish_async() instead of an explicit waitpid(2) call. The change is smaller than it looks because most of it only reduces the indentation of a large part of the inner loop. Signed-off-by: Johannes Sixt <johannes.sixt@telecom.at> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2007-11-04 19:46:48 +00:00
test_expect_success 'create empty repository' '
mkdir foo &&
cd foo &&
git init
'
Sane use of test_expect_failure Originally, test_expect_failure was designed to be the opposite of test_expect_success, but this was a bad decision. Most tests run a series of commands that leads to the single command that needs to be tested, like this: test_expect_{success,failure} 'test title' ' setup1 && setup2 && setup3 && what is to be tested ' And expecting a failure exit from the whole sequence misses the point of writing tests. Your setup$N that are supposed to succeed may have failed without even reaching what you are trying to test. The only valid use of test_expect_failure is to check a trivial single command that is expected to fail, which is a minority in tests of Porcelain-ish commands. This large-ish patch rewrites all uses of test_expect_failure to use test_expect_success and rewrites the condition of what is tested, like this: test_expect_success 'test title' ' setup1 && setup2 && setup3 && ! this command should fail ' test_expect_failure is redefined to serve as a reminder that that test *should* succeed but due to a known breakage in git it currently does not pass. So if git-foo command should create a file 'bar' but you discovered a bug that it doesn't, you can write a test like this: test_expect_failure 'git-foo should create bar' ' rm -f bar && git foo && test -f bar ' This construct acts similar to test_expect_success, but instead of reporting "ok/FAIL" like test_expect_success does, the outcome is reported as "FIXED/still broken". Signed-off-by: Junio C Hamano <gitster@pobox.com>
2008-02-01 09:50:53 +00:00
test_expect_success 'fetch fails' '
upload-pack: Use finish_{command,async}() instead of waitpid(). upload-pack spawns two processes, rev-list and pack-objects, and carefully monitors their status so that it can report failure to the remote end. This change removes the complicated procedures on the grounds of the following observations: - If everything is OK, rev-list closes its output pipe end, upon which pack-objects (which reads from the pipe) sees EOF and terminates itself, closing its output (and error) pipes. upload-pack reads from both until it sees EOF in both. It collects the exit codes of the child processes (which indicate success) and terminates successfully. - If rev-list sees an error, it closes its output and terminates with failure. pack-objects sees EOF in its input and terminates successfully. Again upload-pack reads its inputs until EOF. When it now collects the exit codes of its child processes, it notices the failure of rev-list and signals failure to the remote end. - If pack-objects sees an error, it terminates with failure. Since this breaks the pipe to rev-list, rev-list is killed with SIGPIPE. upload-pack reads its input until EOF, then collects the exit codes of the child processes, notices their failures, and signals failure to the remote end. - If upload-pack itself dies unexpectedly, pack-objects is killed with SIGPIPE, and subsequently also rev-list. The upshot of this is that precise monitoring of child processes is not required because both terminate if either one of them dies unexpectedly. This allows us to use finish_command() and finish_async() instead of an explicit waitpid(2) call. The change is smaller than it looks because most of it only reduces the indentation of a large part of the inner loop. Signed-off-by: Johannes Sixt <johannes.sixt@telecom.at> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2007-11-04 19:46:48 +00:00
test_must_fail git fetch .. master
upload-pack: Use finish_{command,async}() instead of waitpid(). upload-pack spawns two processes, rev-list and pack-objects, and carefully monitors their status so that it can report failure to the remote end. This change removes the complicated procedures on the grounds of the following observations: - If everything is OK, rev-list closes its output pipe end, upon which pack-objects (which reads from the pipe) sees EOF and terminates itself, closing its output (and error) pipes. upload-pack reads from both until it sees EOF in both. It collects the exit codes of the child processes (which indicate success) and terminates successfully. - If rev-list sees an error, it closes its output and terminates with failure. pack-objects sees EOF in its input and terminates successfully. Again upload-pack reads its inputs until EOF. When it now collects the exit codes of its child processes, it notices the failure of rev-list and signals failure to the remote end. - If pack-objects sees an error, it terminates with failure. Since this breaks the pipe to rev-list, rev-list is killed with SIGPIPE. upload-pack reads its input until EOF, then collects the exit codes of the child processes, notices their failures, and signals failure to the remote end. - If upload-pack itself dies unexpectedly, pack-objects is killed with SIGPIPE, and subsequently also rev-list. The upshot of this is that precise monitoring of child processes is not required because both terminate if either one of them dies unexpectedly. This allows us to use finish_command() and finish_async() instead of an explicit waitpid(2) call. The change is smaller than it looks because most of it only reduces the indentation of a large part of the inner loop. Signed-off-by: Johannes Sixt <johannes.sixt@telecom.at> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2007-11-04 19:46:48 +00:00
'
test_done