pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
#include "cache.h"
|
|
|
|
#include "commit.h"
|
|
|
|
#include "tag.h"
|
|
|
|
#include "diff.h"
|
|
|
|
#include "revision.h"
|
|
|
|
#include "progress.h"
|
|
|
|
#include "list-objects.h"
|
|
|
|
#include "pack.h"
|
|
|
|
#include "pack-bitmap.h"
|
|
|
|
#include "pack-revindex.h"
|
|
|
|
#include "pack-objects.h"
|
2017-08-18 22:20:19 +00:00
|
|
|
#include "packfile.h"
|
2018-03-23 17:20:59 +00:00
|
|
|
#include "repository.h"
|
|
|
|
#include "object-store.h"
|
2020-02-14 18:22:29 +00:00
|
|
|
#include "list-objects-filter-options.h"
|
2021-08-31 20:52:21 +00:00
|
|
|
#include "midx.h"
|
builtin/pack-objects.c: respect 'pack.preferBitmapTips'
When writing a new pack with a bitmap, it is sometimes convenient to
indicate some reference prefixes which should receive priority when
selecting which commits to receive bitmaps.
A truly motivated caller could accomplish this by setting
'pack.islandCore', (since all commits in the core island are similarly
marked as preferred) but this requires callers to opt into using delta
islands, which they may or may not want to do.
Introduce a new multi-valued configuration, 'pack.preferBitmapTips' to
allow callers to specify a list of reference prefixes. All references
which have a prefix contained in 'pack.preferBitmapTips' will mark their
tips as "preferred" in the same way as commits are marked as preferred
for selection by 'pack.islandCore'.
The choice of the verb "prefer" is intentional: marking the NEEDS_BITMAP
flag on an object does *not* guarantee that that object will receive a
bitmap. It merely guarantees that that commit will receive a bitmap over
any *other* commit in the same window by bitmap_writer_select_commits().
The test this patch adds reflects this quirk, too. It only tests that
a commit (which didn't receive bitmaps by default) is selected for
bitmaps after changing the value of 'pack.preferBitmapTips' to include
it. Other commits may lose their bitmaps as a byproduct of how the
selection process works (bitmap_writer_select_commits() ignores the
remainder of a window after seeing a commit with the NEEDS_BITMAP flag).
This configuration will aide in selecting important references for
multi-pack bitmaps, since they do not respect the same pack.islandCore
configuration. (They could, but doing so may be confusing, since it is
packs--not bitmaps--which are influenced by the delta-islands
configuration).
In a fork network repository (one which lists all forks of a given
repository as remotes), for example, it is useful to set
pack.preferBitmapTips to 'refs/remotes/<root>/heads' and
'refs/remotes/<root>/tags', where '<root>' is an opaque identifier
referring to the repository which is at the base of the fork chain.
Suggested-by: Jeff King <peff@peff.net>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-04-01 01:32:14 +00:00
|
|
|
#include "config.h"
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* An entry on the bitmap index, representing the bitmap for a given
|
|
|
|
* commit.
|
|
|
|
*/
|
|
|
|
struct stored_bitmap {
|
2019-02-19 00:04:55 +00:00
|
|
|
struct object_id oid;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
struct ewah_bitmap *root;
|
|
|
|
struct stored_bitmap *xor;
|
|
|
|
int flags;
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
2018-06-07 19:04:13 +00:00
|
|
|
* The active bitmap index for a repository. By design, repositories only have
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
* a single bitmap index available (the index for the biggest packfile in
|
|
|
|
* the repository), since bitmap indexes need full closure.
|
|
|
|
*
|
|
|
|
* If there is more than one bitmap index available (e.g. because of alternates),
|
|
|
|
* the active bitmap index is the largest one.
|
|
|
|
*/
|
2018-06-07 19:04:13 +00:00
|
|
|
struct bitmap_index {
|
2021-08-31 20:52:21 +00:00
|
|
|
/*
|
|
|
|
* The pack or multi-pack index (MIDX) that this bitmap index belongs
|
|
|
|
* to.
|
|
|
|
*
|
|
|
|
* Exactly one of these must be non-NULL; this specifies the object
|
|
|
|
* order used to interpret this bitmap.
|
|
|
|
*/
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
struct packed_git *pack;
|
2021-08-31 20:52:21 +00:00
|
|
|
struct multi_pack_index *midx;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Mark the first `reuse_objects` in the packfile as reused:
|
|
|
|
* they will be sent as-is without using them for repacking
|
|
|
|
* calculations
|
|
|
|
*/
|
|
|
|
uint32_t reuse_objects;
|
|
|
|
|
|
|
|
/* mmapped buffer of the whole bitmap index */
|
|
|
|
unsigned char *map;
|
|
|
|
size_t map_size; /* size of the mmaped buffer */
|
|
|
|
size_t map_pos; /* current position when loading the index */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Type indexes.
|
|
|
|
*
|
|
|
|
* Each bitmap marks which objects in the packfile are of the given
|
|
|
|
* type. This provides type information when yielding the objects from
|
|
|
|
* the packfile during a walk, which allows for better delta bases.
|
|
|
|
*/
|
|
|
|
struct ewah_bitmap *commits;
|
|
|
|
struct ewah_bitmap *trees;
|
|
|
|
struct ewah_bitmap *blobs;
|
|
|
|
struct ewah_bitmap *tags;
|
|
|
|
|
2019-02-19 00:04:58 +00:00
|
|
|
/* Map from object ID -> `stored_bitmap` for all the bitmapped commits */
|
|
|
|
kh_oid_map_t *bitmaps;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
|
|
|
/* Number of bitmapped commits */
|
|
|
|
uint32_t entry_count;
|
|
|
|
|
2018-06-07 19:04:14 +00:00
|
|
|
/* If not NULL, this is a name-hash cache pointing into map. */
|
pack-bitmap: implement optional name_hash cache
When we use pack bitmaps rather than walking the object
graph, we end up with the list of objects to include in the
packfile, but we do not know the path at which any tree or
blob objects would be found.
In a recently packed repository, this is fine. A fetch would
use the paths only as a heuristic in the delta compression
phase, and a fully packed repository should not need to do
much delta compression.
As time passes, though, we may acquire more objects on top
of our large bitmapped pack. If clients fetch frequently,
then they never even look at the bitmapped history, and all
works as usual. However, a client who has not fetched since
the last bitmap repack will have "have" tips in the
bitmapped history, but "want" newer objects.
The bitmaps themselves degrade gracefully in this
circumstance. We manually walk the more recent bits of
history, and then use bitmaps when we hit them.
But we would also like to perform delta compression between
the newer objects and the bitmapped objects (both to delta
against what we know the user already has, but also between
"new" and "old" objects that the user is fetching). The lack
of pathnames makes our delta heuristics much less effective.
This patch adds an optional cache of the 32-bit name_hash
values to the end of the bitmap file. If present, a reader
can use it to match bitmapped and non-bitmapped names during
delta compression.
Here are perf results for p5310:
Test origin/master HEAD^ HEAD
-------------------------------------------------------------------------------------------------
5310.2: repack to disk 36.81(37.82+1.43) 47.70(48.74+1.41) +29.6% 47.75(48.70+1.51) +29.7%
5310.3: simulated clone 30.78(29.70+2.14) 1.08(0.97+0.10) -96.5% 1.07(0.94+0.12) -96.5%
5310.4: simulated fetch 3.16(6.10+0.08) 3.54(10.65+0.06) +12.0% 1.70(3.07+0.06) -46.2%
5310.6: partial bitmap 36.76(43.19+1.81) 6.71(11.25+0.76) -81.7% 4.08(6.26+0.46) -88.9%
You can see that the time spent on an incremental fetch goes
down, as our delta heuristics are able to do their work.
And we save time on the partial bitmap clone for the same
reason.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:45 +00:00
|
|
|
uint32_t *hashes;
|
|
|
|
|
2021-08-31 20:52:21 +00:00
|
|
|
/* The checksum of the packfile or MIDX; points into map. */
|
|
|
|
const unsigned char *checksum;
|
|
|
|
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
/*
|
|
|
|
* Extended index.
|
|
|
|
*
|
|
|
|
* When trying to perform bitmap operations with objects that are not
|
|
|
|
* packed in `pack`, these objects are added to this "fake index" and
|
|
|
|
* are assumed to appear at the end of the packfile for all operations
|
|
|
|
*/
|
|
|
|
struct eindex {
|
|
|
|
struct object **objects;
|
|
|
|
uint32_t *hashes;
|
|
|
|
uint32_t count, alloc;
|
2019-02-19 00:04:58 +00:00
|
|
|
kh_oid_pos_t *positions;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
} ext_index;
|
|
|
|
|
|
|
|
/* Bitmap result of the last performed walk */
|
|
|
|
struct bitmap *result;
|
|
|
|
|
pack-bitmap: save "have" bitmap from walk
When we do a bitmap walk, we save the result, which
represents (WANTs & ~HAVEs); i.e., every object we care
about visiting in our walk. However, we throw away the
haves bitmap, which can sometimes be useful, too. Save it
and provide an access function so code which has performed a
walk can query it.
A few notes on the accessor interface:
- the bitmap code calls these "haves" because it grew out
of the want/have negotiation for fetches. But really,
these are simply the objects that would be flagged
UNINTERESTING in a regular traversal. Let's use that
more universal nomenclature for the external module
interface. We may want to change the internal naming
inside the bitmap code, but that's outside the scope of
this patch.
- it still uses a bare "sha1" rather than "oid". That's
true of all of the bitmap code. And in this particular
instance, our caller in pack-objects is dealing with the
bare sha1 that comes from a packed REF_DELTA (we're
pointing directly to the mmap'd pack on disk). That's
something we'll have to deal with as we transition to a
new hash, but we can wait and see how the caller ends up
being fixed and adjust this interface accordingly.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2018-08-21 19:07:01 +00:00
|
|
|
/* "have" bitmap from the last performed walk */
|
|
|
|
struct bitmap *haves;
|
|
|
|
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
/* Version of the bitmap index */
|
|
|
|
unsigned int version;
|
2018-06-07 19:04:13 +00:00
|
|
|
};
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
|
|
|
static struct ewah_bitmap *lookup_stored_bitmap(struct stored_bitmap *st)
|
|
|
|
{
|
|
|
|
struct ewah_bitmap *parent;
|
|
|
|
struct ewah_bitmap *composed;
|
|
|
|
|
|
|
|
if (st->xor == NULL)
|
|
|
|
return st->root;
|
|
|
|
|
|
|
|
composed = ewah_pool_new();
|
|
|
|
parent = lookup_stored_bitmap(st->xor);
|
|
|
|
ewah_xor(st->root, parent, composed);
|
|
|
|
|
|
|
|
ewah_pool_free(st->root);
|
|
|
|
st->root = composed;
|
|
|
|
st->xor = NULL;
|
|
|
|
|
|
|
|
return composed;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Read a bitmap from the current read position on the mmaped
|
|
|
|
* index, and increase the read position accordingly
|
|
|
|
*/
|
|
|
|
static struct ewah_bitmap *read_bitmap_1(struct bitmap_index *index)
|
|
|
|
{
|
|
|
|
struct ewah_bitmap *b = ewah_pool_new();
|
|
|
|
|
2018-06-15 03:44:43 +00:00
|
|
|
ssize_t bitmap_size = ewah_read_mmap(b,
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
index->map + index->map_pos,
|
|
|
|
index->map_size - index->map_pos);
|
|
|
|
|
|
|
|
if (bitmap_size < 0) {
|
|
|
|
error("Failed to load bitmap index (corrupted?)");
|
|
|
|
ewah_pool_free(b);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
index->map_pos += bitmap_size;
|
|
|
|
return b;
|
|
|
|
}
|
|
|
|
|
2021-08-31 20:52:12 +00:00
|
|
|
static uint32_t bitmap_num_objects(struct bitmap_index *index)
|
|
|
|
{
|
2021-08-31 20:52:21 +00:00
|
|
|
if (index->midx)
|
|
|
|
return index->midx->num_objects;
|
2021-08-31 20:52:12 +00:00
|
|
|
return index->pack->num_objects;
|
|
|
|
}
|
|
|
|
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
static int load_bitmap_header(struct bitmap_index *index)
|
|
|
|
{
|
|
|
|
struct bitmap_disk_header *header = (void *)index->map;
|
2020-12-08 22:03:19 +00:00
|
|
|
size_t header_size = sizeof(*header) - GIT_MAX_RAWSZ + the_hash_algo->rawsz;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
2020-12-08 22:03:19 +00:00
|
|
|
if (index->map_size < header_size + the_hash_algo->rawsz)
|
|
|
|
return error("Corrupted bitmap index (too small)");
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
|
|
|
if (memcmp(header->magic, BITMAP_IDX_SIGNATURE, sizeof(BITMAP_IDX_SIGNATURE)) != 0)
|
|
|
|
return error("Corrupted bitmap index file (wrong header)");
|
|
|
|
|
|
|
|
index->version = ntohs(header->version);
|
|
|
|
if (index->version != 1)
|
|
|
|
return error("Unsupported version for bitmap index file (%d)", index->version);
|
|
|
|
|
|
|
|
/* Parse known bitmap format options */
|
|
|
|
{
|
|
|
|
uint32_t flags = ntohs(header->options);
|
2021-08-31 20:52:12 +00:00
|
|
|
size_t cache_size = st_mult(bitmap_num_objects(index), sizeof(uint32_t));
|
2020-12-08 22:03:24 +00:00
|
|
|
unsigned char *index_end = index->map + index->map_size - the_hash_algo->rawsz;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
|
|
|
if ((flags & BITMAP_OPT_FULL_DAG) == 0)
|
|
|
|
return error("Unsupported options for bitmap index file "
|
|
|
|
"(Git requires BITMAP_OPT_FULL_DAG)");
|
pack-bitmap: implement optional name_hash cache
When we use pack bitmaps rather than walking the object
graph, we end up with the list of objects to include in the
packfile, but we do not know the path at which any tree or
blob objects would be found.
In a recently packed repository, this is fine. A fetch would
use the paths only as a heuristic in the delta compression
phase, and a fully packed repository should not need to do
much delta compression.
As time passes, though, we may acquire more objects on top
of our large bitmapped pack. If clients fetch frequently,
then they never even look at the bitmapped history, and all
works as usual. However, a client who has not fetched since
the last bitmap repack will have "have" tips in the
bitmapped history, but "want" newer objects.
The bitmaps themselves degrade gracefully in this
circumstance. We manually walk the more recent bits of
history, and then use bitmaps when we hit them.
But we would also like to perform delta compression between
the newer objects and the bitmapped objects (both to delta
against what we know the user already has, but also between
"new" and "old" objects that the user is fetching). The lack
of pathnames makes our delta heuristics much less effective.
This patch adds an optional cache of the 32-bit name_hash
values to the end of the bitmap file. If present, a reader
can use it to match bitmapped and non-bitmapped names during
delta compression.
Here are perf results for p5310:
Test origin/master HEAD^ HEAD
-------------------------------------------------------------------------------------------------
5310.2: repack to disk 36.81(37.82+1.43) 47.70(48.74+1.41) +29.6% 47.75(48.70+1.51) +29.7%
5310.3: simulated clone 30.78(29.70+2.14) 1.08(0.97+0.10) -96.5% 1.07(0.94+0.12) -96.5%
5310.4: simulated fetch 3.16(6.10+0.08) 3.54(10.65+0.06) +12.0% 1.70(3.07+0.06) -46.2%
5310.6: partial bitmap 36.76(43.19+1.81) 6.71(11.25+0.76) -81.7% 4.08(6.26+0.46) -88.9%
You can see that the time spent on an incremental fetch goes
down, as our delta heuristics are able to do their work.
And we save time on the partial bitmap clone for the same
reason.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:45 +00:00
|
|
|
|
|
|
|
if (flags & BITMAP_OPT_HASH_CACHE) {
|
2020-12-08 22:03:24 +00:00
|
|
|
if (cache_size > index_end - index->map - header_size)
|
|
|
|
return error("corrupted bitmap index file (too short to fit hash cache)");
|
|
|
|
index->hashes = (void *)(index_end - cache_size);
|
|
|
|
index_end -= cache_size;
|
pack-bitmap: implement optional name_hash cache
When we use pack bitmaps rather than walking the object
graph, we end up with the list of objects to include in the
packfile, but we do not know the path at which any tree or
blob objects would be found.
In a recently packed repository, this is fine. A fetch would
use the paths only as a heuristic in the delta compression
phase, and a fully packed repository should not need to do
much delta compression.
As time passes, though, we may acquire more objects on top
of our large bitmapped pack. If clients fetch frequently,
then they never even look at the bitmapped history, and all
works as usual. However, a client who has not fetched since
the last bitmap repack will have "have" tips in the
bitmapped history, but "want" newer objects.
The bitmaps themselves degrade gracefully in this
circumstance. We manually walk the more recent bits of
history, and then use bitmaps when we hit them.
But we would also like to perform delta compression between
the newer objects and the bitmapped objects (both to delta
against what we know the user already has, but also between
"new" and "old" objects that the user is fetching). The lack
of pathnames makes our delta heuristics much less effective.
This patch adds an optional cache of the 32-bit name_hash
values to the end of the bitmap file. If present, a reader
can use it to match bitmapped and non-bitmapped names during
delta compression.
Here are perf results for p5310:
Test origin/master HEAD^ HEAD
-------------------------------------------------------------------------------------------------
5310.2: repack to disk 36.81(37.82+1.43) 47.70(48.74+1.41) +29.6% 47.75(48.70+1.51) +29.7%
5310.3: simulated clone 30.78(29.70+2.14) 1.08(0.97+0.10) -96.5% 1.07(0.94+0.12) -96.5%
5310.4: simulated fetch 3.16(6.10+0.08) 3.54(10.65+0.06) +12.0% 1.70(3.07+0.06) -46.2%
5310.6: partial bitmap 36.76(43.19+1.81) 6.71(11.25+0.76) -81.7% 4.08(6.26+0.46) -88.9%
You can see that the time spent on an incremental fetch goes
down, as our delta heuristics are able to do their work.
And we save time on the partial bitmap clone for the same
reason.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:45 +00:00
|
|
|
}
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
index->entry_count = ntohl(header->entry_count);
|
2021-08-31 20:52:21 +00:00
|
|
|
index->checksum = header->checksum;
|
2020-12-08 22:03:19 +00:00
|
|
|
index->map_pos += header_size;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct stored_bitmap *store_bitmap(struct bitmap_index *index,
|
|
|
|
struct ewah_bitmap *root,
|
2020-02-24 04:32:27 +00:00
|
|
|
const struct object_id *oid,
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
struct stored_bitmap *xor_with,
|
|
|
|
int flags)
|
|
|
|
{
|
|
|
|
struct stored_bitmap *stored;
|
|
|
|
khiter_t hash_pos;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
stored = xmalloc(sizeof(struct stored_bitmap));
|
|
|
|
stored->root = root;
|
|
|
|
stored->xor = xor_with;
|
|
|
|
stored->flags = flags;
|
2020-02-24 04:32:27 +00:00
|
|
|
oidcpy(&stored->oid, oid);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
2019-02-19 00:04:58 +00:00
|
|
|
hash_pos = kh_put_oid_map(index->bitmaps, stored->oid, &ret);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
|
|
|
/* a 0 return code means the insertion succeeded with no changes,
|
|
|
|
* because the SHA1 already existed on the map. this is bad, there
|
|
|
|
* shouldn't be duplicated commits in the index */
|
|
|
|
if (ret == 0) {
|
2020-02-24 04:32:27 +00:00
|
|
|
error("Duplicate entry in bitmap index: %s", oid_to_hex(oid));
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
kh_value(index->bitmaps, hash_pos) = stored;
|
|
|
|
return stored;
|
|
|
|
}
|
|
|
|
|
2014-11-27 05:24:01 +00:00
|
|
|
static inline uint32_t read_be32(const unsigned char *buffer, size_t *pos)
|
|
|
|
{
|
|
|
|
uint32_t result = get_be32(buffer + *pos);
|
|
|
|
(*pos) += sizeof(result);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline uint8_t read_u8(const unsigned char *buffer, size_t *pos)
|
|
|
|
{
|
|
|
|
return buffer[(*pos)++];
|
|
|
|
}
|
|
|
|
|
2015-05-18 23:24:09 +00:00
|
|
|
#define MAX_XOR_OFFSET 160
|
|
|
|
|
2021-08-31 20:52:14 +00:00
|
|
|
static int nth_bitmap_object_oid(struct bitmap_index *index,
|
|
|
|
struct object_id *oid,
|
|
|
|
uint32_t n)
|
|
|
|
{
|
2021-08-31 20:52:21 +00:00
|
|
|
if (index->midx)
|
|
|
|
return nth_midxed_object_oid(oid, index->midx, n) ? 0 : -1;
|
2021-08-31 20:52:14 +00:00
|
|
|
return nth_packed_object_id(oid, index->pack, n);
|
|
|
|
}
|
|
|
|
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
static int load_bitmap_entries_v1(struct bitmap_index *index)
|
|
|
|
{
|
|
|
|
uint32_t i;
|
2015-05-18 23:24:09 +00:00
|
|
|
struct stored_bitmap *recent_bitmaps[MAX_XOR_OFFSET] = { NULL };
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
|
|
|
for (i = 0; i < index->entry_count; ++i) {
|
|
|
|
int xor_offset, flags;
|
|
|
|
struct ewah_bitmap *bitmap = NULL;
|
|
|
|
struct stored_bitmap *xor_bitmap = NULL;
|
|
|
|
uint32_t commit_idx_pos;
|
2020-02-24 04:32:27 +00:00
|
|
|
struct object_id oid;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
pack-bitmap.c: check reads more aggressively when loading
Before 'load_bitmap_entries_v1()' reads an actual EWAH bitmap, it should
check that it can safely do so by ensuring that there are at least 6
bytes available to be read (four for the commit's index position, and
then two more for the xor offset and flags, respectively).
Likewise, it should check that the commit index it read refers to a
legitimate object in the pack.
The first fix catches a truncation bug that was exposed when testing,
and the second is purely precautionary.
There are some possible future improvements, not pursued here. They are:
- Computing the correct boundary of the bitmap itself in the caller
and ensuring that we don't read past it. This may or may not be
worth it, since in a truncation situation, all bets are off: (is the
trailer still there and the bitmap entries malformed, or is the
trailer truncated?). The best we can do is try to read what's there
as if it's correct data (and protect ourselves when it's obviously
bogus).
- Avoid the magic "6" by teaching read_be32() and read_u8() (both of
which are custom helpers for this function) to check sizes before
advancing the pointers.
- Adding more tests in this area. Testing these truncation situations
are remarkably fragile to even subtle changes in the bitmap
generation. So, the resulting tests are likely to be quite brittle.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-12-08 22:04:26 +00:00
|
|
|
if (index->map_size - index->map_pos < 6)
|
|
|
|
return error("corrupt ewah bitmap: truncated header for entry %d", i);
|
|
|
|
|
2014-11-27 05:24:01 +00:00
|
|
|
commit_idx_pos = read_be32(index->map, &index->map_pos);
|
|
|
|
xor_offset = read_u8(index->map, &index->map_pos);
|
|
|
|
flags = read_u8(index->map, &index->map_pos);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
2021-08-31 20:52:14 +00:00
|
|
|
if (nth_bitmap_object_oid(index, &oid, commit_idx_pos) < 0)
|
pack-bitmap.c: check reads more aggressively when loading
Before 'load_bitmap_entries_v1()' reads an actual EWAH bitmap, it should
check that it can safely do so by ensuring that there are at least 6
bytes available to be read (four for the commit's index position, and
then two more for the xor offset and flags, respectively).
Likewise, it should check that the commit index it read refers to a
legitimate object in the pack.
The first fix catches a truncation bug that was exposed when testing,
and the second is purely precautionary.
There are some possible future improvements, not pursued here. They are:
- Computing the correct boundary of the bitmap itself in the caller
and ensuring that we don't read past it. This may or may not be
worth it, since in a truncation situation, all bets are off: (is the
trailer still there and the bitmap entries malformed, or is the
trailer truncated?). The best we can do is try to read what's there
as if it's correct data (and protect ourselves when it's obviously
bogus).
- Avoid the magic "6" by teaching read_be32() and read_u8() (both of
which are custom helpers for this function) to check sizes before
advancing the pointers.
- Adding more tests in this area. Testing these truncation situations
are remarkably fragile to even subtle changes in the bitmap
generation. So, the resulting tests are likely to be quite brittle.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-12-08 22:04:26 +00:00
|
|
|
return error("corrupt ewah bitmap: commit index %u out of range",
|
|
|
|
(unsigned)commit_idx_pos);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
|
|
|
bitmap = read_bitmap_1(index);
|
|
|
|
if (!bitmap)
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
if (xor_offset > MAX_XOR_OFFSET || xor_offset > i)
|
|
|
|
return error("Corrupted bitmap pack index");
|
|
|
|
|
|
|
|
if (xor_offset > 0) {
|
|
|
|
xor_bitmap = recent_bitmaps[(i - xor_offset) % MAX_XOR_OFFSET];
|
|
|
|
|
|
|
|
if (xor_bitmap == NULL)
|
|
|
|
return error("Invalid XOR offset in bitmap pack index");
|
|
|
|
}
|
|
|
|
|
|
|
|
recent_bitmaps[i % MAX_XOR_OFFSET] = store_bitmap(
|
2020-02-24 04:32:27 +00:00
|
|
|
index, bitmap, &oid, xor_bitmap, flags);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2021-08-31 20:52:21 +00:00
|
|
|
char *midx_bitmap_filename(struct multi_pack_index *midx)
|
|
|
|
{
|
|
|
|
return xstrfmt("%s-%s.bitmap",
|
|
|
|
get_midx_filename(midx->object_dir),
|
|
|
|
hash_to_hex(get_midx_checksum(midx)));
|
|
|
|
}
|
|
|
|
|
|
|
|
char *pack_bitmap_filename(struct packed_git *p)
|
2015-01-14 23:40:53 +00:00
|
|
|
{
|
2015-09-24 21:07:09 +00:00
|
|
|
size_t len;
|
2015-01-14 23:40:53 +00:00
|
|
|
|
2015-09-24 21:07:09 +00:00
|
|
|
if (!strip_suffix(p->pack_name, ".pack", &len))
|
2018-05-02 09:38:39 +00:00
|
|
|
BUG("pack_name does not end in .pack");
|
2015-09-24 21:07:09 +00:00
|
|
|
return xstrfmt("%.*s.bitmap", (int)len, p->pack_name);
|
2015-01-14 23:40:53 +00:00
|
|
|
}
|
|
|
|
|
2021-08-31 20:52:21 +00:00
|
|
|
static int open_midx_bitmap_1(struct bitmap_index *bitmap_git,
|
|
|
|
struct multi_pack_index *midx)
|
|
|
|
{
|
|
|
|
struct stat st;
|
|
|
|
char *idx_name = midx_bitmap_filename(midx);
|
|
|
|
int fd = git_open(idx_name);
|
|
|
|
|
|
|
|
free(idx_name);
|
|
|
|
|
|
|
|
if (fd < 0)
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
if (fstat(fd, &st)) {
|
|
|
|
close(fd);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (bitmap_git->pack || bitmap_git->midx) {
|
|
|
|
/* ignore extra bitmap file; we can only handle one */
|
|
|
|
warning("ignoring extra bitmap file: %s",
|
|
|
|
get_midx_filename(midx->object_dir));
|
|
|
|
close(fd);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
bitmap_git->midx = midx;
|
|
|
|
bitmap_git->map_size = xsize_t(st.st_size);
|
|
|
|
bitmap_git->map_pos = 0;
|
|
|
|
bitmap_git->map = xmmap(NULL, bitmap_git->map_size, PROT_READ,
|
|
|
|
MAP_PRIVATE, fd, 0);
|
|
|
|
close(fd);
|
|
|
|
|
|
|
|
if (load_bitmap_header(bitmap_git) < 0)
|
|
|
|
goto cleanup;
|
|
|
|
|
|
|
|
if (!hasheq(get_midx_checksum(bitmap_git->midx), bitmap_git->checksum))
|
|
|
|
goto cleanup;
|
|
|
|
|
|
|
|
if (load_midx_revindex(bitmap_git->midx) < 0) {
|
|
|
|
warning(_("multi-pack bitmap is missing required reverse index"));
|
|
|
|
goto cleanup;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
cleanup:
|
|
|
|
munmap(bitmap_git->map, bitmap_git->map_size);
|
|
|
|
bitmap_git->map_size = 0;
|
|
|
|
bitmap_git->map = NULL;
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
2018-06-07 19:04:13 +00:00
|
|
|
static int open_pack_bitmap_1(struct bitmap_index *bitmap_git, struct packed_git *packfile)
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
{
|
|
|
|
int fd;
|
|
|
|
struct stat st;
|
|
|
|
char *idx_name;
|
|
|
|
|
|
|
|
if (open_pack_index(packfile))
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
idx_name = pack_bitmap_filename(packfile);
|
2016-10-24 18:02:59 +00:00
|
|
|
fd = git_open(idx_name);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
free(idx_name);
|
|
|
|
|
|
|
|
if (fd < 0)
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
if (fstat(fd, &st)) {
|
|
|
|
close(fd);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
2021-08-31 20:52:21 +00:00
|
|
|
if (bitmap_git->pack || bitmap_git->midx) {
|
|
|
|
/* ignore extra bitmap file; we can only handle one */
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
warning("ignoring extra bitmap file: %s", packfile->pack_name);
|
|
|
|
close(fd);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
pack-bitmap: check pack validity when opening bitmap
When pack-objects adds an entry to its list of objects to pack, it may
mark the packfile and offset that contains the file, which we can later
use to output the object verbatim. If the packfile is deleted while we
are running (e.g., by another process running "git repack"), we may die
in use_pack() if the pack file cannot be opened.
We worked around this in 4c08018204 (pack-objects: protect against
disappearing packs, 2011-10-14) by making sure we can open the pack
before recording it as a source. This detects a pack which has already
disappeared while generating the packing list, and because we keep the
pack's file descriptor (or an mmap window) open, it means we can access
it later (unless you exceed core.packedgitlimit).
The bitmap code that was added later does not do this; it adds entries
to the packlist without checking that the packfile is still valid, and
is vulnerable to this race. It needs the same treatment as 4c08018204.
However, rather than add it in just that one spot, it makes more sense
to simply open and check the packfile when we open the bitmap.
Technically you can use the .bitmap without even looking in the .pack
file (e.g., if you are just printing a list of objects without accessing
them), but it's much simpler to do it early. That covers all later
direct uses of the pack (due to the cached descriptor) without having to
check each one directly. For example, in pack-objects we need to protect
the packlist entries, but we also access the pack directly as part of
the reuse_partial_pack_from_bitmap() feature. This patch covers both
cases.
There's no test here, because the problem is inherently racy. I
reproduced and verified the fix with this script:
rm -rf parent.git push.git fetch.git
push() {
(
cd push.git &&
echo content >>file &&
git add file &&
git commit -qm "change $1" &&
git push -q origin HEAD &&
echo "push $1..."
) &&
(
cd parent.git &&
git repack -ad -q &&
echo "repack $1..."
)
}
fetch() {
rm -rf fetch.git &&
git clone -q file://$PWD/parent.git fetch.git &&
echo "fetch $1..."
}
git init --bare parent.git &&
git --git-dir=parent.git config transfer.unpacklimit 1 &&
git clone parent.git push.git &&
(for i in `seq 1 1000`; do push $i || break; done) &
pusher=$!
(for i in `seq 1 1000`; do fetch $i || break; done) &
fetcher=$!
wait $fetcher
kill $pusher
That simulates a race between a client cloning and a push triggering a
repack on the server. Without this patch, it generally fails within a
couple hundred iterations with:
remote: fatal: packfile ./objects/pack/.tmp-1377349-pack-498afdec371232bdb99d1757872f5569331da61e.pack cannot be accessed
error: git upload-pack: git-pack-objects died with error.
fatal: git upload-pack: aborting due to possible repository corruption on the remote side.
remote: aborting due to possible repository corruption on the remote side.
fatal: early EOF
fatal: fetch-pack: invalid index-pack output
With this patch, it reliably runs through all thousand attempts.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-07-23 09:29:34 +00:00
|
|
|
if (!is_pack_valid(packfile)) {
|
|
|
|
close(fd);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
2018-06-07 19:04:13 +00:00
|
|
|
bitmap_git->pack = packfile;
|
|
|
|
bitmap_git->map_size = xsize_t(st.st_size);
|
|
|
|
bitmap_git->map = xmmap(NULL, bitmap_git->map_size, PROT_READ, MAP_PRIVATE, fd, 0);
|
|
|
|
bitmap_git->map_pos = 0;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
close(fd);
|
|
|
|
|
2018-06-07 19:04:13 +00:00
|
|
|
if (load_bitmap_header(bitmap_git) < 0) {
|
|
|
|
munmap(bitmap_git->map, bitmap_git->map_size);
|
|
|
|
bitmap_git->map = NULL;
|
|
|
|
bitmap_git->map_size = 0;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2021-08-31 20:52:21 +00:00
|
|
|
static int load_reverse_index(struct bitmap_index *bitmap_git)
|
|
|
|
{
|
|
|
|
if (bitmap_is_midx(bitmap_git)) {
|
|
|
|
uint32_t i;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The multi-pack-index's .rev file is already loaded via
|
|
|
|
* open_pack_bitmap_1().
|
|
|
|
*
|
|
|
|
* But we still need to open the individual pack .rev files,
|
|
|
|
* since we will need to make use of them in pack-objects.
|
|
|
|
*/
|
|
|
|
for (i = 0; i < bitmap_git->midx->num_packs; i++) {
|
|
|
|
if (prepare_midx_pack(the_repository, bitmap_git->midx, i))
|
|
|
|
die(_("load_reverse_index: could not open pack"));
|
|
|
|
ret = load_pack_revindex(bitmap_git->midx->packs[i]);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
return load_pack_revindex(bitmap_git->pack);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int load_bitmap(struct bitmap_index *bitmap_git)
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
{
|
2018-09-01 07:50:57 +00:00
|
|
|
assert(bitmap_git->map);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
2019-02-19 00:04:58 +00:00
|
|
|
bitmap_git->bitmaps = kh_init_oid_map();
|
|
|
|
bitmap_git->ext_index.positions = kh_init_oid_pos();
|
2021-08-31 20:52:21 +00:00
|
|
|
|
|
|
|
if (load_reverse_index(bitmap_git))
|
2019-04-05 18:04:24 +00:00
|
|
|
goto failed;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
2018-06-07 19:04:13 +00:00
|
|
|
if (!(bitmap_git->commits = read_bitmap_1(bitmap_git)) ||
|
|
|
|
!(bitmap_git->trees = read_bitmap_1(bitmap_git)) ||
|
|
|
|
!(bitmap_git->blobs = read_bitmap_1(bitmap_git)) ||
|
|
|
|
!(bitmap_git->tags = read_bitmap_1(bitmap_git)))
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
goto failed;
|
|
|
|
|
2018-06-07 19:04:13 +00:00
|
|
|
if (load_bitmap_entries_v1(bitmap_git) < 0)
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
goto failed;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
failed:
|
2018-06-07 19:04:13 +00:00
|
|
|
munmap(bitmap_git->map, bitmap_git->map_size);
|
|
|
|
bitmap_git->map = NULL;
|
|
|
|
bitmap_git->map_size = 0;
|
pack-objects: improve partial packfile reuse
The old code to reuse deltas from an existing packfile
just tried to dump a whole segment of the pack verbatim.
That's faster than the traditional way of actually adding
objects to the packing list, but it didn't kick in very
often. This new code is really going for a middle ground:
do _some_ per-object work, but way less than we'd
traditionally do.
The general strategy of the new code is to make a bitmap
of objects from the packfile we'll include, and then
iterate over it, writing out each object exactly as it is
in our on-disk pack, but _not_ adding it to our packlist
(which costs memory, and increases the search space for
deltas).
One complication is that if we're omitting some objects,
we can't set a delta against a base that we're not
sending. So we have to check each object in
try_partial_reuse() to make sure we have its delta.
About performance, in the worst case we might have
interleaved objects that we are sending or not sending,
and we'd have as many chunks as objects. But in practice
we send big chunks.
For instance, packing torvalds/linux on GitHub servers
now reused 6.5M objects, but only needed ~50k chunks.
Helped-by: Jonathan Tan <jonathantanmy@google.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Christian Couder <chriscool@tuxfamily.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2019-12-18 11:25:45 +00:00
|
|
|
|
|
|
|
kh_destroy_oid_map(bitmap_git->bitmaps);
|
|
|
|
bitmap_git->bitmaps = NULL;
|
|
|
|
|
|
|
|
kh_destroy_oid_pos(bitmap_git->ext_index.positions);
|
|
|
|
bitmap_git->ext_index.positions = NULL;
|
|
|
|
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
2018-11-10 05:49:08 +00:00
|
|
|
static int open_pack_bitmap(struct repository *r,
|
|
|
|
struct bitmap_index *bitmap_git)
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
{
|
|
|
|
struct packed_git *p;
|
|
|
|
int ret = -1;
|
|
|
|
|
2018-09-01 07:50:57 +00:00
|
|
|
assert(!bitmap_git->map);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
2018-11-10 05:49:08 +00:00
|
|
|
for (p = get_all_packs(r); p; p = p->next) {
|
2018-06-07 19:04:13 +00:00
|
|
|
if (open_pack_bitmap_1(bitmap_git, p) == 0)
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
ret = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2021-08-31 20:52:21 +00:00
|
|
|
static int open_midx_bitmap(struct repository *r,
|
|
|
|
struct bitmap_index *bitmap_git)
|
|
|
|
{
|
|
|
|
struct multi_pack_index *midx;
|
|
|
|
|
|
|
|
assert(!bitmap_git->map);
|
|
|
|
|
|
|
|
for (midx = get_multi_pack_index(r); midx; midx = midx->next) {
|
|
|
|
if (!open_midx_bitmap_1(bitmap_git, midx))
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int open_bitmap(struct repository *r,
|
|
|
|
struct bitmap_index *bitmap_git)
|
|
|
|
{
|
|
|
|
assert(!bitmap_git->map);
|
|
|
|
|
|
|
|
if (!open_midx_bitmap(r, bitmap_git))
|
|
|
|
return 0;
|
|
|
|
return open_pack_bitmap(r, bitmap_git);
|
|
|
|
}
|
|
|
|
|
2018-11-10 05:49:08 +00:00
|
|
|
struct bitmap_index *prepare_bitmap_git(struct repository *r)
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
{
|
2018-06-07 19:04:13 +00:00
|
|
|
struct bitmap_index *bitmap_git = xcalloc(1, sizeof(*bitmap_git));
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
2021-08-31 20:52:21 +00:00
|
|
|
if (!open_bitmap(r, bitmap_git) && !load_bitmap(bitmap_git))
|
|
|
|
return bitmap_git;
|
|
|
|
|
|
|
|
free_bitmap_index(bitmap_git);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
2021-09-09 19:56:58 +00:00
|
|
|
struct bitmap_index *prepare_midx_bitmap_git(struct multi_pack_index *midx)
|
2021-08-31 20:52:21 +00:00
|
|
|
{
|
|
|
|
struct bitmap_index *bitmap_git = xcalloc(1, sizeof(*bitmap_git));
|
|
|
|
|
|
|
|
if (!open_midx_bitmap_1(bitmap_git, midx) && !load_bitmap(bitmap_git))
|
2018-06-07 19:04:13 +00:00
|
|
|
return bitmap_git;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
2018-06-07 19:04:14 +00:00
|
|
|
free_bitmap_index(bitmap_git);
|
2018-06-07 19:04:13 +00:00
|
|
|
return NULL;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
struct include_data {
|
2018-06-07 19:04:13 +00:00
|
|
|
struct bitmap_index *bitmap_git;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
struct bitmap *base;
|
|
|
|
struct bitmap *seen;
|
|
|
|
};
|
|
|
|
|
2020-12-08 22:05:09 +00:00
|
|
|
struct ewah_bitmap *bitmap_for_commit(struct bitmap_index *bitmap_git,
|
|
|
|
struct commit *commit)
|
|
|
|
{
|
|
|
|
khiter_t hash_pos = kh_get_oid_map(bitmap_git->bitmaps,
|
|
|
|
commit->object.oid);
|
|
|
|
if (hash_pos >= kh_end(bitmap_git->bitmaps))
|
|
|
|
return NULL;
|
|
|
|
return lookup_stored_bitmap(kh_value(bitmap_git->bitmaps, hash_pos));
|
|
|
|
}
|
|
|
|
|
2018-06-07 19:04:13 +00:00
|
|
|
static inline int bitmap_position_extended(struct bitmap_index *bitmap_git,
|
2019-02-19 00:04:58 +00:00
|
|
|
const struct object_id *oid)
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
{
|
khash: drop broken oid_map typedef
Commit 5a8643eff1 (khash: move oid hash table definition, 2019-02-19)
added a khash "oid_map" type to match the existing "oid" type, which is
a simple set (i.e., just keys, no values). But in setting up the
khash_oid_map typedef, it accidentally referred to "kh_oid_t", which is
the set type.
Nobody noticed the breakage because there are not yet any callers; the
type was added just as a match to the existing sha1 types (whose map
type confusingly _is_ called khash_sha1, and it has no matching set
type).
We could easily fix this with s/oid/oid_map/ in the typedef. But let's
take this a step further, and just drop the typedef entirely. These
typedefs were added by 5a8643eff1 to match the khash_sha1 typedefs. But
the actual khash-derived type names are descriptive enough; this is just
adding an extra layer of indirection. The khash names do not quite
follow our usual style (e.g., they end in "_t"), but since we end up
using other khash names (e.g., khiter_t, kh_get_oid()) anyway, just
typedef-ing the struct name is not really helping much.
And there are already many cases where we use the raw khash type names
anyway (e.g., the "set" variant defined just above us does not have such
a typedef!).
So let's drop this typedef, and the matching oid_pos one (which actually
_does_ have a user, but we can easily convert it).
We'll leave the khash_sha1 typedef around. The ultimate fate of its
callers should be conversion to kh_oid_map_t, so there's no point in
going through the noise of changing the names now.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2019-06-20 07:41:25 +00:00
|
|
|
kh_oid_pos_t *positions = bitmap_git->ext_index.positions;
|
2019-02-19 00:04:58 +00:00
|
|
|
khiter_t pos = kh_get_oid_pos(positions, *oid);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
|
|
|
if (pos < kh_end(positions)) {
|
|
|
|
int bitmap_pos = kh_value(positions, pos);
|
2021-08-31 20:52:12 +00:00
|
|
|
return bitmap_pos + bitmap_num_objects(bitmap_git);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
2018-06-07 19:04:13 +00:00
|
|
|
static inline int bitmap_position_packfile(struct bitmap_index *bitmap_git,
|
2019-02-19 00:04:58 +00:00
|
|
|
const struct object_id *oid)
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
{
|
2021-01-13 22:23:52 +00:00
|
|
|
uint32_t pos;
|
2019-02-19 00:04:58 +00:00
|
|
|
off_t offset = find_pack_entry_one(oid->hash, bitmap_git->pack);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
if (!offset)
|
|
|
|
return -1;
|
|
|
|
|
2021-01-13 22:23:52 +00:00
|
|
|
if (offset_to_pack_pos(bitmap_git->pack, offset, &pos) < 0)
|
|
|
|
return -1;
|
|
|
|
return pos;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
}
|
|
|
|
|
2021-08-31 20:52:21 +00:00
|
|
|
static int bitmap_position_midx(struct bitmap_index *bitmap_git,
|
|
|
|
const struct object_id *oid)
|
|
|
|
{
|
|
|
|
uint32_t want, got;
|
|
|
|
if (!bsearch_midx(oid, bitmap_git->midx, &want))
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
if (midx_to_pack_pos(bitmap_git->midx, want, &got) < 0)
|
|
|
|
return -1;
|
|
|
|
return got;
|
|
|
|
}
|
|
|
|
|
2018-06-07 19:04:13 +00:00
|
|
|
static int bitmap_position(struct bitmap_index *bitmap_git,
|
2019-02-19 00:04:58 +00:00
|
|
|
const struct object_id *oid)
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
{
|
2021-08-31 20:52:21 +00:00
|
|
|
int pos;
|
|
|
|
if (bitmap_is_midx(bitmap_git))
|
|
|
|
pos = bitmap_position_midx(bitmap_git, oid);
|
|
|
|
else
|
|
|
|
pos = bitmap_position_packfile(bitmap_git, oid);
|
2019-02-19 00:04:58 +00:00
|
|
|
return (pos >= 0) ? pos : bitmap_position_extended(bitmap_git, oid);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
}
|
|
|
|
|
2018-06-07 19:04:13 +00:00
|
|
|
static int ext_index_add_object(struct bitmap_index *bitmap_git,
|
|
|
|
struct object *object, const char *name)
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
{
|
2018-06-07 19:04:13 +00:00
|
|
|
struct eindex *eindex = &bitmap_git->ext_index;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
|
|
|
khiter_t hash_pos;
|
|
|
|
int hash_ret;
|
|
|
|
int bitmap_pos;
|
|
|
|
|
2019-02-19 00:04:58 +00:00
|
|
|
hash_pos = kh_put_oid_pos(eindex->positions, object->oid, &hash_ret);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
if (hash_ret > 0) {
|
|
|
|
if (eindex->count >= eindex->alloc) {
|
|
|
|
eindex->alloc = (eindex->alloc + 16) * 3 / 2;
|
2014-09-16 18:56:57 +00:00
|
|
|
REALLOC_ARRAY(eindex->objects, eindex->alloc);
|
|
|
|
REALLOC_ARRAY(eindex->hashes, eindex->alloc);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
bitmap_pos = eindex->count;
|
|
|
|
eindex->objects[eindex->count] = object;
|
|
|
|
eindex->hashes[eindex->count] = pack_name_hash(name);
|
|
|
|
kh_value(eindex->positions, hash_pos) = bitmap_pos;
|
|
|
|
eindex->count++;
|
|
|
|
} else {
|
|
|
|
bitmap_pos = kh_value(eindex->positions, hash_pos);
|
|
|
|
}
|
|
|
|
|
2021-08-31 20:52:12 +00:00
|
|
|
return bitmap_pos + bitmap_num_objects(bitmap_git);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
}
|
|
|
|
|
2018-06-07 19:04:13 +00:00
|
|
|
struct bitmap_show_data {
|
|
|
|
struct bitmap_index *bitmap_git;
|
|
|
|
struct bitmap *base;
|
|
|
|
};
|
|
|
|
|
|
|
|
static void show_object(struct object *object, const char *name, void *data_)
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
{
|
2018-06-07 19:04:13 +00:00
|
|
|
struct bitmap_show_data *data = data_;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
int bitmap_pos;
|
|
|
|
|
2019-02-19 00:04:58 +00:00
|
|
|
bitmap_pos = bitmap_position(data->bitmap_git, &object->oid);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
list-objects: pass full pathname to callbacks
When we find a blob at "a/b/c", we currently pass this to
our show_object_fn callbacks as two components: "a/b/" and
"c". Callbacks which want the full value then call
path_name(), which concatenates the two. But this is an
inefficient interface; the path is a strbuf, and we could
simply append "c" to it temporarily, then roll back the
length, without creating a new copy.
So we could improve this by teaching the callsites of
path_name() this trick (and there are only 3). But we can
also notice that no callback actually cares about the
broken-down representation, and simply pass each callback
the full path "a/b/c" as a string. The callback code becomes
even simpler, then, as we do not have to worry about freeing
an allocated buffer, nor rolling back our modification to
the strbuf.
This is theoretically less efficient, as some callbacks
would not bother to format the final path component. But in
practice this is not measurable. Since we use the same
strbuf over and over, our work to grow it is amortized, and
we really only pay to memcpy a few bytes.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-02-11 22:28:36 +00:00
|
|
|
if (bitmap_pos < 0)
|
2018-06-07 19:04:13 +00:00
|
|
|
bitmap_pos = ext_index_add_object(data->bitmap_git, object,
|
|
|
|
name);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
2018-06-07 19:04:13 +00:00
|
|
|
bitmap_set(data->base, bitmap_pos);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void show_commit(struct commit *commit, void *data)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
2018-06-07 19:04:13 +00:00
|
|
|
static int add_to_include_set(struct bitmap_index *bitmap_git,
|
|
|
|
struct include_data *data,
|
2020-12-08 22:05:09 +00:00
|
|
|
struct commit *commit,
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
int bitmap_pos)
|
|
|
|
{
|
2020-12-08 22:05:09 +00:00
|
|
|
struct ewah_bitmap *partial;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
|
|
|
if (data->seen && bitmap_get(data->seen, bitmap_pos))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (bitmap_get(data->base, bitmap_pos))
|
|
|
|
return 0;
|
|
|
|
|
2020-12-08 22:05:09 +00:00
|
|
|
partial = bitmap_for_commit(bitmap_git, commit);
|
|
|
|
if (partial) {
|
|
|
|
bitmap_or_ewah(data->base, partial);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
bitmap_set(data->base, bitmap_pos);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int should_include(struct commit *commit, void *_data)
|
|
|
|
{
|
|
|
|
struct include_data *data = _data;
|
|
|
|
int bitmap_pos;
|
|
|
|
|
2019-02-19 00:04:58 +00:00
|
|
|
bitmap_pos = bitmap_position(data->bitmap_git, &commit->object.oid);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
if (bitmap_pos < 0)
|
2018-06-07 19:04:13 +00:00
|
|
|
bitmap_pos = ext_index_add_object(data->bitmap_git,
|
|
|
|
(struct object *)commit,
|
|
|
|
NULL);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
2020-12-08 22:05:09 +00:00
|
|
|
if (!add_to_include_set(data->bitmap_git, data, commit, bitmap_pos)) {
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
struct commit_list *parent = commit->parents;
|
|
|
|
|
|
|
|
while (parent) {
|
|
|
|
parent->item->object.flags |= SEEN;
|
|
|
|
parent = parent->next;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
bitmaps: don't recurse into trees already in the bitmap
If an object is already mentioned in a reachability bitmap we are
building, then by definition so are all of the objects it can reach. We
have an optimization to stop traversing commits when we see they are
already in the bitmap, but we don't do the same for trees.
It's generally unavoidable to recurse into trees for commits not yet
covered by bitmaps (since most commits generally do have unique
top-level trees). But they usually have subtrees that are shared with
other commits (i.e., all of the subtrees the commit _didn't_ touch). And
some of those commits (and their trees) may be covered by the bitmap.
Usually this isn't _too_ big a deal, because we'll visit those subtrees
only once in total for the whole walk. But if you have a large number of
unbitmapped commits, and if your tree is big, then you may end up
opening a lot of sub-trees for no good reason.
We can use the same optimization we do for commits here: when we are
about to open a tree, see if it's in the bitmap (either the one we are
building, or the "seen" bitmap which covers the UNINTERESTING side of
the bitmap when doing a set-difference).
This works especially well because we'll visit all commits before
hitting any trees. So even in a history like:
A -- B
if "A" has a bitmap on disk but "B" doesn't, we'll already have OR-ed in
the results from A before looking at B's tree (so we really will only
look at trees touched by B).
For most repositories, the timings produced by p5310 are unspectacular.
Here's linux.git:
Test HEAD^ HEAD
--------------------------------------------------------------------
5310.4: simulated clone 6.00(5.90+0.10) 5.98(5.90+0.08) -0.3%
5310.5: simulated fetch 2.98(5.45+0.18) 2.85(5.31+0.18) -4.4%
5310.7: rev-list (commits) 0.32(0.29+0.03) 0.33(0.30+0.03) +3.1%
5310.8: rev-list (objects) 1.48(1.44+0.03) 1.49(1.44+0.05) +0.7%
Any improvement there is within the noise (the +3.1% on test 7 has to be
noise, since we are not recursing into trees, and thus the new code
isn't even run). The results for git.git are likewise uninteresting.
But here are numbers from some other real-world repositories (that are
not public). This one's tree is comparable in size to linux.git, but has
~16k refs (and so less complete bitmap coverage):
Test HEAD^ HEAD
-------------------------------------------------------------------------
5310.4: simulated clone 38.34(39.86+0.74) 33.95(35.53+0.76) -11.5%
5310.5: simulated fetch 2.29(6.31+0.35) 2.20(5.97+0.41) -3.9%
5310.7: rev-list (commits) 0.99(0.86+0.13) 0.96(0.85+0.11) -3.0%
5310.8: rev-list (objects) 11.32(11.04+0.27) 6.59(6.37+0.21) -41.8%
And here's another with a very large tree (~340k entries), and a fairly
large number of refs (~10k):
Test HEAD^ HEAD
-------------------------------------------------------------------------
5310.3: simulated clone 53.83(54.71+1.54) 39.77(40.76+1.50) -26.1%
5310.4: simulated fetch 19.91(20.11+0.56) 19.79(19.98+0.67) -0.6%
5310.6: rev-list (commits) 0.54(0.44+0.11) 0.51(0.43+0.07) -5.6%
5310.7: rev-list (objects) 24.32(23.59+0.73) 9.85(9.49+0.36) -59.5%
This patch provides substantial improvements in these larger cases, and
have any drawbacks for smaller ones (the cost of the bitmap check is
quite small compared to an actual tree traversal).
Note that we have to add a version of revision.c's include_check
callback which handles non-commits. We could possibly consolidate this
into a single callback for all objects types, as there's only one user
of the feature which would need converted (pack-bitmap.c:should_include).
That would in theory let us avoid duplicating any logic. But when I
tried it, the code ended up much worse to read, with lots of repeated
"if it's a commit do this, otherwise do that". Having two separate
callbacks splits that naturally, and matches the existing split of
show_commit/show_object callbacks.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-06-14 12:05:44 +00:00
|
|
|
static int should_include_obj(struct object *obj, void *_data)
|
|
|
|
{
|
|
|
|
struct include_data *data = _data;
|
|
|
|
int bitmap_pos;
|
|
|
|
|
|
|
|
bitmap_pos = bitmap_position(data->bitmap_git, &obj->oid);
|
|
|
|
if (bitmap_pos < 0)
|
|
|
|
return 1;
|
|
|
|
if ((data->seen && bitmap_get(data->seen, bitmap_pos)) ||
|
|
|
|
bitmap_get(data->base, bitmap_pos)) {
|
|
|
|
obj->flags |= SEEN;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
2020-12-08 22:05:14 +00:00
|
|
|
static int add_commit_to_bitmap(struct bitmap_index *bitmap_git,
|
|
|
|
struct bitmap **base,
|
|
|
|
struct commit *commit)
|
|
|
|
{
|
|
|
|
struct ewah_bitmap *or_with = bitmap_for_commit(bitmap_git, commit);
|
|
|
|
|
|
|
|
if (!or_with)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (*base == NULL)
|
|
|
|
*base = ewah_to_bitmap(or_with);
|
|
|
|
else
|
|
|
|
bitmap_or_ewah(*base, or_with);
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
2018-06-07 19:04:13 +00:00
|
|
|
static struct bitmap *find_objects(struct bitmap_index *bitmap_git,
|
|
|
|
struct rev_info *revs,
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
struct object_list *roots,
|
pack-bitmap: pass object filter to fill-in traversal
Sometimes a bitmap traversal still has to walk some commits manually,
because those commits aren't included in the bitmap packfile (e.g., due
to a push or commit since the last full repack). If we're given an
object filter, we don't pass it down to this traversal. It's not
necessary for correctness because the bitmap code has its own filters to
post-process the bitmap result (which it must, to filter out the objects
that _are_ mentioned in the bitmapped packfile).
And with blob filters, there was no performance reason to pass along
those filters, either. The fill-in traversal could omit them from the
result, but it wouldn't save us any time to do so, since we'd still have
to walk each tree entry to see if it's a blob or not.
But now that we support tree filters, there's opportunity for savings. A
tree:depth=0 filter means we can avoid accessing trees entirely, since
we know we won't them (or any of the subtrees or blobs they point to).
The new test in p5310 shows this off (the "partial bitmap" state is one
where HEAD~100 and its ancestors are all in a bitmapped pack, but
HEAD~100..HEAD are not). Here are the results (run against linux.git):
Test HEAD^ HEAD
-------------------------------------------------------------------------------------------------
[...]
5310.16: rev-list with tree filter (partial bitmap) 0.19(0.17+0.02) 0.03(0.02+0.01) -84.2%
The absolute number of savings isn't _huge_, but keep in mind that we
only omitted 100 first-parent links (in the version of linux.git here,
that's 894 actual commits). In a more pathological case, we might have a
much larger proportion of non-bitmapped commits. I didn't bother
creating such a case in the perf script because the setup is expensive,
and this is plenty to show the savings as a percentage.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-05-04 23:12:38 +00:00
|
|
|
struct bitmap *seen,
|
|
|
|
struct list_objects_filter_options *filter)
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
{
|
|
|
|
struct bitmap *base = NULL;
|
|
|
|
int needs_walk = 0;
|
|
|
|
|
|
|
|
struct object_list *not_mapped = NULL;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Go through all the roots for the walk. The ones that have bitmaps
|
|
|
|
* on the bitmap index will be `or`ed together to form an initial
|
|
|
|
* global reachability analysis.
|
|
|
|
*
|
|
|
|
* The ones without bitmaps in the index will be stored in the
|
|
|
|
* `not_mapped_list` for further processing.
|
|
|
|
*/
|
|
|
|
while (roots) {
|
|
|
|
struct object *object = roots->item;
|
|
|
|
roots = roots->next;
|
|
|
|
|
2020-12-08 22:05:14 +00:00
|
|
|
if (object->type == OBJ_COMMIT &&
|
|
|
|
add_commit_to_bitmap(bitmap_git, &base, (struct commit *)object)) {
|
|
|
|
object->flags |= SEEN;
|
|
|
|
continue;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
object_list_insert(object, ¬_mapped);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Best case scenario: We found bitmaps for all the roots,
|
|
|
|
* so the resulting `or` bitmap has the full reachability analysis
|
|
|
|
*/
|
|
|
|
if (not_mapped == NULL)
|
|
|
|
return base;
|
|
|
|
|
|
|
|
roots = not_mapped;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Let's iterate through all the roots that don't have bitmaps to
|
|
|
|
* check if we can determine them to be reachable from the existing
|
|
|
|
* global bitmap.
|
|
|
|
*
|
|
|
|
* If we cannot find them in the existing global bitmap, we'll need
|
|
|
|
* to push them to an actual walk and run it until we can confirm
|
|
|
|
* they are reachable
|
|
|
|
*/
|
|
|
|
while (roots) {
|
|
|
|
struct object *object = roots->item;
|
|
|
|
int pos;
|
|
|
|
|
|
|
|
roots = roots->next;
|
2019-02-19 00:04:58 +00:00
|
|
|
pos = bitmap_position(bitmap_git, &object->oid);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
|
|
|
if (pos < 0 || base == NULL || !bitmap_get(base, pos)) {
|
|
|
|
object->flags &= ~UNINTERESTING;
|
|
|
|
add_pending_object(revs, object, "");
|
|
|
|
needs_walk = 1;
|
|
|
|
} else {
|
|
|
|
object->flags |= SEEN;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (needs_walk) {
|
|
|
|
struct include_data incdata;
|
2018-06-07 19:04:13 +00:00
|
|
|
struct bitmap_show_data show_data;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
|
|
|
if (base == NULL)
|
|
|
|
base = bitmap_new();
|
|
|
|
|
2018-06-07 19:04:13 +00:00
|
|
|
incdata.bitmap_git = bitmap_git;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
incdata.base = base;
|
|
|
|
incdata.seen = seen;
|
|
|
|
|
|
|
|
revs->include_check = should_include;
|
bitmaps: don't recurse into trees already in the bitmap
If an object is already mentioned in a reachability bitmap we are
building, then by definition so are all of the objects it can reach. We
have an optimization to stop traversing commits when we see they are
already in the bitmap, but we don't do the same for trees.
It's generally unavoidable to recurse into trees for commits not yet
covered by bitmaps (since most commits generally do have unique
top-level trees). But they usually have subtrees that are shared with
other commits (i.e., all of the subtrees the commit _didn't_ touch). And
some of those commits (and their trees) may be covered by the bitmap.
Usually this isn't _too_ big a deal, because we'll visit those subtrees
only once in total for the whole walk. But if you have a large number of
unbitmapped commits, and if your tree is big, then you may end up
opening a lot of sub-trees for no good reason.
We can use the same optimization we do for commits here: when we are
about to open a tree, see if it's in the bitmap (either the one we are
building, or the "seen" bitmap which covers the UNINTERESTING side of
the bitmap when doing a set-difference).
This works especially well because we'll visit all commits before
hitting any trees. So even in a history like:
A -- B
if "A" has a bitmap on disk but "B" doesn't, we'll already have OR-ed in
the results from A before looking at B's tree (so we really will only
look at trees touched by B).
For most repositories, the timings produced by p5310 are unspectacular.
Here's linux.git:
Test HEAD^ HEAD
--------------------------------------------------------------------
5310.4: simulated clone 6.00(5.90+0.10) 5.98(5.90+0.08) -0.3%
5310.5: simulated fetch 2.98(5.45+0.18) 2.85(5.31+0.18) -4.4%
5310.7: rev-list (commits) 0.32(0.29+0.03) 0.33(0.30+0.03) +3.1%
5310.8: rev-list (objects) 1.48(1.44+0.03) 1.49(1.44+0.05) +0.7%
Any improvement there is within the noise (the +3.1% on test 7 has to be
noise, since we are not recursing into trees, and thus the new code
isn't even run). The results for git.git are likewise uninteresting.
But here are numbers from some other real-world repositories (that are
not public). This one's tree is comparable in size to linux.git, but has
~16k refs (and so less complete bitmap coverage):
Test HEAD^ HEAD
-------------------------------------------------------------------------
5310.4: simulated clone 38.34(39.86+0.74) 33.95(35.53+0.76) -11.5%
5310.5: simulated fetch 2.29(6.31+0.35) 2.20(5.97+0.41) -3.9%
5310.7: rev-list (commits) 0.99(0.86+0.13) 0.96(0.85+0.11) -3.0%
5310.8: rev-list (objects) 11.32(11.04+0.27) 6.59(6.37+0.21) -41.8%
And here's another with a very large tree (~340k entries), and a fairly
large number of refs (~10k):
Test HEAD^ HEAD
-------------------------------------------------------------------------
5310.3: simulated clone 53.83(54.71+1.54) 39.77(40.76+1.50) -26.1%
5310.4: simulated fetch 19.91(20.11+0.56) 19.79(19.98+0.67) -0.6%
5310.6: rev-list (commits) 0.54(0.44+0.11) 0.51(0.43+0.07) -5.6%
5310.7: rev-list (objects) 24.32(23.59+0.73) 9.85(9.49+0.36) -59.5%
This patch provides substantial improvements in these larger cases, and
have any drawbacks for smaller ones (the cost of the bitmap check is
quite small compared to an actual tree traversal).
Note that we have to add a version of revision.c's include_check
callback which handles non-commits. We could possibly consolidate this
into a single callback for all objects types, as there's only one user
of the feature which would need converted (pack-bitmap.c:should_include).
That would in theory let us avoid duplicating any logic. But when I
tried it, the code ended up much worse to read, with lots of repeated
"if it's a commit do this, otherwise do that". Having two separate
callbacks splits that naturally, and matches the existing split of
show_commit/show_object callbacks.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-06-14 12:05:44 +00:00
|
|
|
revs->include_check_obj = should_include_obj;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
revs->include_check_data = &incdata;
|
|
|
|
|
|
|
|
if (prepare_revision_walk(revs))
|
|
|
|
die("revision walk setup failed");
|
|
|
|
|
2018-06-07 19:04:13 +00:00
|
|
|
show_data.bitmap_git = bitmap_git;
|
|
|
|
show_data.base = base;
|
|
|
|
|
pack-bitmap: pass object filter to fill-in traversal
Sometimes a bitmap traversal still has to walk some commits manually,
because those commits aren't included in the bitmap packfile (e.g., due
to a push or commit since the last full repack). If we're given an
object filter, we don't pass it down to this traversal. It's not
necessary for correctness because the bitmap code has its own filters to
post-process the bitmap result (which it must, to filter out the objects
that _are_ mentioned in the bitmapped packfile).
And with blob filters, there was no performance reason to pass along
those filters, either. The fill-in traversal could omit them from the
result, but it wouldn't save us any time to do so, since we'd still have
to walk each tree entry to see if it's a blob or not.
But now that we support tree filters, there's opportunity for savings. A
tree:depth=0 filter means we can avoid accessing trees entirely, since
we know we won't them (or any of the subtrees or blobs they point to).
The new test in p5310 shows this off (the "partial bitmap" state is one
where HEAD~100 and its ancestors are all in a bitmapped pack, but
HEAD~100..HEAD are not). Here are the results (run against linux.git):
Test HEAD^ HEAD
-------------------------------------------------------------------------------------------------
[...]
5310.16: rev-list with tree filter (partial bitmap) 0.19(0.17+0.02) 0.03(0.02+0.01) -84.2%
The absolute number of savings isn't _huge_, but keep in mind that we
only omitted 100 first-parent links (in the version of linux.git here,
that's 894 actual commits). In a more pathological case, we might have a
much larger proportion of non-bitmapped commits. I didn't bother
creating such a case in the perf script because the setup is expensive,
and this is plenty to show the savings as a percentage.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-05-04 23:12:38 +00:00
|
|
|
traverse_commit_list_filtered(filter, revs,
|
|
|
|
show_commit, show_object,
|
|
|
|
&show_data, NULL);
|
2021-04-28 15:42:30 +00:00
|
|
|
|
|
|
|
revs->include_check = NULL;
|
bitmaps: don't recurse into trees already in the bitmap
If an object is already mentioned in a reachability bitmap we are
building, then by definition so are all of the objects it can reach. We
have an optimization to stop traversing commits when we see they are
already in the bitmap, but we don't do the same for trees.
It's generally unavoidable to recurse into trees for commits not yet
covered by bitmaps (since most commits generally do have unique
top-level trees). But they usually have subtrees that are shared with
other commits (i.e., all of the subtrees the commit _didn't_ touch). And
some of those commits (and their trees) may be covered by the bitmap.
Usually this isn't _too_ big a deal, because we'll visit those subtrees
only once in total for the whole walk. But if you have a large number of
unbitmapped commits, and if your tree is big, then you may end up
opening a lot of sub-trees for no good reason.
We can use the same optimization we do for commits here: when we are
about to open a tree, see if it's in the bitmap (either the one we are
building, or the "seen" bitmap which covers the UNINTERESTING side of
the bitmap when doing a set-difference).
This works especially well because we'll visit all commits before
hitting any trees. So even in a history like:
A -- B
if "A" has a bitmap on disk but "B" doesn't, we'll already have OR-ed in
the results from A before looking at B's tree (so we really will only
look at trees touched by B).
For most repositories, the timings produced by p5310 are unspectacular.
Here's linux.git:
Test HEAD^ HEAD
--------------------------------------------------------------------
5310.4: simulated clone 6.00(5.90+0.10) 5.98(5.90+0.08) -0.3%
5310.5: simulated fetch 2.98(5.45+0.18) 2.85(5.31+0.18) -4.4%
5310.7: rev-list (commits) 0.32(0.29+0.03) 0.33(0.30+0.03) +3.1%
5310.8: rev-list (objects) 1.48(1.44+0.03) 1.49(1.44+0.05) +0.7%
Any improvement there is within the noise (the +3.1% on test 7 has to be
noise, since we are not recursing into trees, and thus the new code
isn't even run). The results for git.git are likewise uninteresting.
But here are numbers from some other real-world repositories (that are
not public). This one's tree is comparable in size to linux.git, but has
~16k refs (and so less complete bitmap coverage):
Test HEAD^ HEAD
-------------------------------------------------------------------------
5310.4: simulated clone 38.34(39.86+0.74) 33.95(35.53+0.76) -11.5%
5310.5: simulated fetch 2.29(6.31+0.35) 2.20(5.97+0.41) -3.9%
5310.7: rev-list (commits) 0.99(0.86+0.13) 0.96(0.85+0.11) -3.0%
5310.8: rev-list (objects) 11.32(11.04+0.27) 6.59(6.37+0.21) -41.8%
And here's another with a very large tree (~340k entries), and a fairly
large number of refs (~10k):
Test HEAD^ HEAD
-------------------------------------------------------------------------
5310.3: simulated clone 53.83(54.71+1.54) 39.77(40.76+1.50) -26.1%
5310.4: simulated fetch 19.91(20.11+0.56) 19.79(19.98+0.67) -0.6%
5310.6: rev-list (commits) 0.54(0.44+0.11) 0.51(0.43+0.07) -5.6%
5310.7: rev-list (objects) 24.32(23.59+0.73) 9.85(9.49+0.36) -59.5%
This patch provides substantial improvements in these larger cases, and
have any drawbacks for smaller ones (the cost of the bitmap check is
quite small compared to an actual tree traversal).
Note that we have to add a version of revision.c's include_check
callback which handles non-commits. We could possibly consolidate this
into a single callback for all objects types, as there's only one user
of the feature which would need converted (pack-bitmap.c:should_include).
That would in theory let us avoid duplicating any logic. But when I
tried it, the code ended up much worse to read, with lots of repeated
"if it's a commit do this, otherwise do that". Having two separate
callbacks splits that naturally, and matches the existing split of
show_commit/show_object callbacks.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-06-14 12:05:44 +00:00
|
|
|
revs->include_check_obj = NULL;
|
2021-04-28 15:42:30 +00:00
|
|
|
revs->include_check_data = NULL;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
return base;
|
|
|
|
}
|
|
|
|
|
2018-06-07 19:04:13 +00:00
|
|
|
static void show_extended_objects(struct bitmap_index *bitmap_git,
|
rev-list: allow commit-only bitmap traversals
Ever since we added reachability bitmap support, we've been able to use
it with rev-list to get the full list of objects, like:
git rev-list --objects --use-bitmap-index --all
But you can't do so without --objects, since we weren't ready to just
show the commits. However, the internals of the bitmap code are mostly
ready for this: they avoid opening up trees when walking to fill in the
bitmaps. We just need to actually pass in the rev_info to
traverse_bitmap_commit_list() so it knows which types to bother
triggering our callback for.
For completeness, the perf test now covers both the existing --objects
case, as well as the new commits-only behavior (the objects one got way
faster when we introduced bitmaps, but obviously isn't improved now).
Here are numbers for linux.git:
Test HEAD^ HEAD
------------------------------------------------------------------------
5310.7: rev-list (commits) 8.29(8.10+0.19) 1.76(1.72+0.04) -78.8%
5310.8: rev-list (objects) 8.06(7.94+0.12) 8.14(7.94+0.13) +1.0%
That run was cheating a little, as I didn't have any commit-graph in the
repository, and we'd built it by default these days when running git-gc.
Here are numbers with a commit-graph:
Test HEAD^ HEAD
------------------------------------------------------------------------
5310.7: rev-list (commits) 0.70(0.58+0.12) 0.51(0.46+0.04) -27.1%
5310.8: rev-list (objects) 6.20(6.09+0.10) 6.27(6.16+0.11) +1.1%
Still an improvement, but a lot less impressive.
We could have the perf script remove any commit-graph to show the
out-sized effect, but it probably makes sense to leave it in what would
be a more typical setup.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-02-14 18:22:27 +00:00
|
|
|
struct rev_info *revs,
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
show_reachable_fn show_reach)
|
|
|
|
{
|
2018-06-07 19:04:13 +00:00
|
|
|
struct bitmap *objects = bitmap_git->result;
|
|
|
|
struct eindex *eindex = &bitmap_git->ext_index;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
uint32_t i;
|
|
|
|
|
|
|
|
for (i = 0; i < eindex->count; ++i) {
|
|
|
|
struct object *obj;
|
|
|
|
|
2021-08-31 20:52:12 +00:00
|
|
|
if (!bitmap_get(objects, bitmap_num_objects(bitmap_git) + i))
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
continue;
|
|
|
|
|
|
|
|
obj = eindex->objects[i];
|
rev-list: allow commit-only bitmap traversals
Ever since we added reachability bitmap support, we've been able to use
it with rev-list to get the full list of objects, like:
git rev-list --objects --use-bitmap-index --all
But you can't do so without --objects, since we weren't ready to just
show the commits. However, the internals of the bitmap code are mostly
ready for this: they avoid opening up trees when walking to fill in the
bitmaps. We just need to actually pass in the rev_info to
traverse_bitmap_commit_list() so it knows which types to bother
triggering our callback for.
For completeness, the perf test now covers both the existing --objects
case, as well as the new commits-only behavior (the objects one got way
faster when we introduced bitmaps, but obviously isn't improved now).
Here are numbers for linux.git:
Test HEAD^ HEAD
------------------------------------------------------------------------
5310.7: rev-list (commits) 8.29(8.10+0.19) 1.76(1.72+0.04) -78.8%
5310.8: rev-list (objects) 8.06(7.94+0.12) 8.14(7.94+0.13) +1.0%
That run was cheating a little, as I didn't have any commit-graph in the
repository, and we'd built it by default these days when running git-gc.
Here are numbers with a commit-graph:
Test HEAD^ HEAD
------------------------------------------------------------------------
5310.7: rev-list (commits) 0.70(0.58+0.12) 0.51(0.46+0.04) -27.1%
5310.8: rev-list (objects) 6.20(6.09+0.10) 6.27(6.16+0.11) +1.1%
Still an improvement, but a lot less impressive.
We could have the perf script remove any commit-graph to show the
out-sized effect, but it probably makes sense to leave it in what would
be a more typical setup.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-02-14 18:22:27 +00:00
|
|
|
if ((obj->type == OBJ_BLOB && !revs->blob_objects) ||
|
|
|
|
(obj->type == OBJ_TREE && !revs->tree_objects) ||
|
|
|
|
(obj->type == OBJ_TAG && !revs->tag_objects))
|
|
|
|
continue;
|
|
|
|
|
2017-10-15 22:07:00 +00:00
|
|
|
show_reach(&obj->oid, obj->type, 0, eindex->hashes[i], NULL, 0);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2020-02-13 02:16:15 +00:00
|
|
|
static void init_type_iterator(struct ewah_iterator *it,
|
|
|
|
struct bitmap_index *bitmap_git,
|
|
|
|
enum object_type type)
|
|
|
|
{
|
|
|
|
switch (type) {
|
|
|
|
case OBJ_COMMIT:
|
|
|
|
ewah_iterator_init(it, bitmap_git->commits);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OBJ_TREE:
|
|
|
|
ewah_iterator_init(it, bitmap_git->trees);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OBJ_BLOB:
|
|
|
|
ewah_iterator_init(it, bitmap_git->blobs);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case OBJ_TAG:
|
|
|
|
ewah_iterator_init(it, bitmap_git->tags);
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
BUG("object type %d not stored by bitmap type index", type);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
static void show_objects_for_type(
|
2018-06-07 19:04:13 +00:00
|
|
|
struct bitmap_index *bitmap_git,
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
enum object_type object_type,
|
|
|
|
show_reachable_fn show_reach)
|
|
|
|
{
|
2019-12-18 11:25:47 +00:00
|
|
|
size_t i = 0;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
uint32_t offset;
|
|
|
|
|
|
|
|
struct ewah_iterator it;
|
|
|
|
eword_t filter;
|
|
|
|
|
2018-06-07 19:04:13 +00:00
|
|
|
struct bitmap *objects = bitmap_git->result;
|
|
|
|
|
2020-02-13 02:16:15 +00:00
|
|
|
init_type_iterator(&it, bitmap_git, object_type);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
2019-12-18 11:25:47 +00:00
|
|
|
for (i = 0; i < objects->word_alloc &&
|
|
|
|
ewah_iterator_next(&filter, &it); i++) {
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
eword_t word = objects->words[i] & filter;
|
2019-12-18 11:25:47 +00:00
|
|
|
size_t pos = (i * BITS_IN_EWORD);
|
|
|
|
|
|
|
|
if (!word)
|
|
|
|
continue;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
2015-06-03 06:39:37 +00:00
|
|
|
for (offset = 0; offset < BITS_IN_EWORD; ++offset) {
|
2021-08-31 20:52:21 +00:00
|
|
|
struct packed_git *pack;
|
2017-10-15 22:07:00 +00:00
|
|
|
struct object_id oid;
|
2021-01-13 22:23:56 +00:00
|
|
|
uint32_t hash = 0, index_pos;
|
|
|
|
off_t ofs;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
|
|
|
if ((word >> offset) == 0)
|
|
|
|
break;
|
|
|
|
|
|
|
|
offset += ewah_bit_ctz64(word >> offset);
|
|
|
|
|
2021-08-31 20:52:21 +00:00
|
|
|
if (bitmap_is_midx(bitmap_git)) {
|
|
|
|
struct multi_pack_index *m = bitmap_git->midx;
|
|
|
|
uint32_t pack_id;
|
|
|
|
|
|
|
|
index_pos = pack_pos_to_midx(m, pos + offset);
|
|
|
|
ofs = nth_midxed_offset(m, index_pos);
|
|
|
|
nth_midxed_object_oid(&oid, m, index_pos);
|
|
|
|
|
|
|
|
pack_id = nth_midxed_pack_int_id(m, index_pos);
|
|
|
|
pack = bitmap_git->midx->packs[pack_id];
|
|
|
|
} else {
|
|
|
|
index_pos = pack_pos_to_index(bitmap_git->pack, pos + offset);
|
|
|
|
ofs = pack_pos_to_offset(bitmap_git->pack, pos + offset);
|
|
|
|
nth_bitmap_object_oid(bitmap_git, &oid, index_pos);
|
|
|
|
|
|
|
|
pack = bitmap_git->pack;
|
|
|
|
}
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
2018-06-07 19:04:13 +00:00
|
|
|
if (bitmap_git->hashes)
|
2021-01-13 22:23:56 +00:00
|
|
|
hash = get_be32(bitmap_git->hashes + index_pos);
|
pack-bitmap: implement optional name_hash cache
When we use pack bitmaps rather than walking the object
graph, we end up with the list of objects to include in the
packfile, but we do not know the path at which any tree or
blob objects would be found.
In a recently packed repository, this is fine. A fetch would
use the paths only as a heuristic in the delta compression
phase, and a fully packed repository should not need to do
much delta compression.
As time passes, though, we may acquire more objects on top
of our large bitmapped pack. If clients fetch frequently,
then they never even look at the bitmapped history, and all
works as usual. However, a client who has not fetched since
the last bitmap repack will have "have" tips in the
bitmapped history, but "want" newer objects.
The bitmaps themselves degrade gracefully in this
circumstance. We manually walk the more recent bits of
history, and then use bitmaps when we hit them.
But we would also like to perform delta compression between
the newer objects and the bitmapped objects (both to delta
against what we know the user already has, but also between
"new" and "old" objects that the user is fetching). The lack
of pathnames makes our delta heuristics much less effective.
This patch adds an optional cache of the 32-bit name_hash
values to the end of the bitmap file. If present, a reader
can use it to match bitmapped and non-bitmapped names during
delta compression.
Here are perf results for p5310:
Test origin/master HEAD^ HEAD
-------------------------------------------------------------------------------------------------
5310.2: repack to disk 36.81(37.82+1.43) 47.70(48.74+1.41) +29.6% 47.75(48.70+1.51) +29.7%
5310.3: simulated clone 30.78(29.70+2.14) 1.08(0.97+0.10) -96.5% 1.07(0.94+0.12) -96.5%
5310.4: simulated fetch 3.16(6.10+0.08) 3.54(10.65+0.06) +12.0% 1.70(3.07+0.06) -46.2%
5310.6: partial bitmap 36.76(43.19+1.81) 6.71(11.25+0.76) -81.7% 4.08(6.26+0.46) -88.9%
You can see that the time spent on an incremental fetch goes
down, as our delta heuristics are able to do their work.
And we save time on the partial bitmap clone for the same
reason.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:45 +00:00
|
|
|
|
2021-08-31 20:52:21 +00:00
|
|
|
show_reach(&oid, object_type, 0, hash, pack, ofs);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-06-07 19:04:13 +00:00
|
|
|
static int in_bitmapped_pack(struct bitmap_index *bitmap_git,
|
|
|
|
struct object_list *roots)
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
{
|
|
|
|
while (roots) {
|
|
|
|
struct object *object = roots->item;
|
|
|
|
roots = roots->next;
|
|
|
|
|
2021-08-31 20:52:21 +00:00
|
|
|
if (bitmap_is_midx(bitmap_git)) {
|
|
|
|
if (bsearch_midx(&object->oid, bitmap_git->midx, NULL))
|
|
|
|
return 1;
|
|
|
|
} else {
|
|
|
|
if (find_pack_entry_one(object->oid.hash, bitmap_git->pack) > 0)
|
|
|
|
return 1;
|
|
|
|
}
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2020-05-04 23:12:31 +00:00
|
|
|
static struct bitmap *find_tip_objects(struct bitmap_index *bitmap_git,
|
|
|
|
struct object_list *tip_objects,
|
|
|
|
enum object_type type)
|
2020-02-14 18:22:36 +00:00
|
|
|
{
|
|
|
|
struct bitmap *result = bitmap_new();
|
|
|
|
struct object_list *p;
|
|
|
|
|
|
|
|
for (p = tip_objects; p; p = p->next) {
|
|
|
|
int pos;
|
|
|
|
|
2020-05-04 23:12:31 +00:00
|
|
|
if (p->item->type != type)
|
2020-02-14 18:22:36 +00:00
|
|
|
continue;
|
|
|
|
|
|
|
|
pos = bitmap_position(bitmap_git, &p->item->oid);
|
|
|
|
if (pos < 0)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
bitmap_set(result, pos);
|
|
|
|
}
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2020-05-04 23:12:31 +00:00
|
|
|
static void filter_bitmap_exclude_type(struct bitmap_index *bitmap_git,
|
|
|
|
struct object_list *tip_objects,
|
|
|
|
struct bitmap *to_filter,
|
|
|
|
enum object_type type)
|
2020-02-14 18:22:36 +00:00
|
|
|
{
|
|
|
|
struct eindex *eindex = &bitmap_git->ext_index;
|
|
|
|
struct bitmap *tips;
|
|
|
|
struct ewah_iterator it;
|
|
|
|
eword_t mask;
|
|
|
|
uint32_t i;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The non-bitmap version of this filter never removes
|
2020-05-04 23:12:31 +00:00
|
|
|
* objects which the other side specifically asked for,
|
2020-02-14 18:22:36 +00:00
|
|
|
* so we must match that behavior.
|
|
|
|
*/
|
2020-05-04 23:12:31 +00:00
|
|
|
tips = find_tip_objects(bitmap_git, tip_objects, type);
|
2020-02-14 18:22:36 +00:00
|
|
|
|
|
|
|
/*
|
2021-07-20 20:16:22 +00:00
|
|
|
* We can use the type-level bitmap for 'type' to work in whole
|
|
|
|
* words for the objects that are actually in the bitmapped
|
|
|
|
* packfile.
|
2020-02-14 18:22:36 +00:00
|
|
|
*/
|
2020-05-04 23:12:31 +00:00
|
|
|
for (i = 0, init_type_iterator(&it, bitmap_git, type);
|
2020-02-14 18:22:36 +00:00
|
|
|
i < to_filter->word_alloc && ewah_iterator_next(&mask, &it);
|
|
|
|
i++) {
|
|
|
|
if (i < tips->word_alloc)
|
|
|
|
mask &= ~tips->words[i];
|
|
|
|
to_filter->words[i] &= ~mask;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2021-07-20 20:16:22 +00:00
|
|
|
* Clear any objects that weren't in the packfile (and so would
|
|
|
|
* not have been caught by the loop above. We'll have to check
|
|
|
|
* them individually.
|
2020-02-14 18:22:36 +00:00
|
|
|
*/
|
|
|
|
for (i = 0; i < eindex->count; i++) {
|
2021-08-31 20:52:12 +00:00
|
|
|
uint32_t pos = i + bitmap_num_objects(bitmap_git);
|
2020-05-04 23:12:31 +00:00
|
|
|
if (eindex->objects[i]->type == type &&
|
2020-02-14 18:22:36 +00:00
|
|
|
bitmap_get(to_filter, pos) &&
|
|
|
|
!bitmap_get(tips, pos))
|
|
|
|
bitmap_unset(to_filter, pos);
|
|
|
|
}
|
|
|
|
|
|
|
|
bitmap_free(tips);
|
|
|
|
}
|
|
|
|
|
2020-05-04 23:12:31 +00:00
|
|
|
static void filter_bitmap_blob_none(struct bitmap_index *bitmap_git,
|
|
|
|
struct object_list *tip_objects,
|
|
|
|
struct bitmap *to_filter)
|
|
|
|
{
|
|
|
|
filter_bitmap_exclude_type(bitmap_git, tip_objects, to_filter,
|
|
|
|
OBJ_BLOB);
|
|
|
|
}
|
|
|
|
|
2020-02-14 18:22:39 +00:00
|
|
|
static unsigned long get_size_by_pos(struct bitmap_index *bitmap_git,
|
|
|
|
uint32_t pos)
|
|
|
|
{
|
|
|
|
unsigned long size;
|
|
|
|
struct object_info oi = OBJECT_INFO_INIT;
|
|
|
|
|
|
|
|
oi.sizep = &size;
|
|
|
|
|
2021-08-31 20:52:12 +00:00
|
|
|
if (pos < bitmap_num_objects(bitmap_git)) {
|
2021-08-31 20:52:21 +00:00
|
|
|
struct packed_git *pack;
|
|
|
|
off_t ofs;
|
|
|
|
|
|
|
|
if (bitmap_is_midx(bitmap_git)) {
|
|
|
|
uint32_t midx_pos = pack_pos_to_midx(bitmap_git->midx, pos);
|
|
|
|
uint32_t pack_id = nth_midxed_pack_int_id(bitmap_git->midx, midx_pos);
|
|
|
|
|
|
|
|
pack = bitmap_git->midx->packs[pack_id];
|
|
|
|
ofs = nth_midxed_offset(bitmap_git->midx, midx_pos);
|
|
|
|
} else {
|
|
|
|
pack = bitmap_git->pack;
|
|
|
|
ofs = pack_pos_to_offset(pack, pos);
|
|
|
|
}
|
|
|
|
|
2021-01-13 22:24:00 +00:00
|
|
|
if (packed_object_info(the_repository, pack, ofs, &oi) < 0) {
|
2020-02-14 18:22:39 +00:00
|
|
|
struct object_id oid;
|
2021-08-31 20:52:14 +00:00
|
|
|
nth_bitmap_object_oid(bitmap_git, &oid,
|
|
|
|
pack_pos_to_index(pack, pos));
|
2020-02-14 18:22:39 +00:00
|
|
|
die(_("unable to get size of %s"), oid_to_hex(&oid));
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
struct eindex *eindex = &bitmap_git->ext_index;
|
2021-08-31 20:52:12 +00:00
|
|
|
struct object *obj = eindex->objects[pos - bitmap_num_objects(bitmap_git)];
|
2020-02-14 18:22:39 +00:00
|
|
|
if (oid_object_info_extended(the_repository, &obj->oid, &oi, 0) < 0)
|
|
|
|
die(_("unable to get size of %s"), oid_to_hex(&obj->oid));
|
|
|
|
}
|
|
|
|
|
|
|
|
return size;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void filter_bitmap_blob_limit(struct bitmap_index *bitmap_git,
|
|
|
|
struct object_list *tip_objects,
|
|
|
|
struct bitmap *to_filter,
|
|
|
|
unsigned long limit)
|
|
|
|
{
|
|
|
|
struct eindex *eindex = &bitmap_git->ext_index;
|
|
|
|
struct bitmap *tips;
|
|
|
|
struct ewah_iterator it;
|
|
|
|
eword_t mask;
|
|
|
|
uint32_t i;
|
|
|
|
|
2020-05-04 23:12:31 +00:00
|
|
|
tips = find_tip_objects(bitmap_git, tip_objects, OBJ_BLOB);
|
2020-02-14 18:22:39 +00:00
|
|
|
|
|
|
|
for (i = 0, init_type_iterator(&it, bitmap_git, OBJ_BLOB);
|
|
|
|
i < to_filter->word_alloc && ewah_iterator_next(&mask, &it);
|
|
|
|
i++) {
|
|
|
|
eword_t word = to_filter->words[i] & mask;
|
|
|
|
unsigned offset;
|
|
|
|
|
|
|
|
for (offset = 0; offset < BITS_IN_EWORD; offset++) {
|
|
|
|
uint32_t pos;
|
|
|
|
|
|
|
|
if ((word >> offset) == 0)
|
|
|
|
break;
|
|
|
|
offset += ewah_bit_ctz64(word >> offset);
|
|
|
|
pos = i * BITS_IN_EWORD + offset;
|
|
|
|
|
|
|
|
if (!bitmap_get(tips, pos) &&
|
|
|
|
get_size_by_pos(bitmap_git, pos) >= limit)
|
|
|
|
bitmap_unset(to_filter, pos);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < eindex->count; i++) {
|
2021-08-31 20:52:12 +00:00
|
|
|
uint32_t pos = i + bitmap_num_objects(bitmap_git);
|
2020-02-14 18:22:39 +00:00
|
|
|
if (eindex->objects[i]->type == OBJ_BLOB &&
|
|
|
|
bitmap_get(to_filter, pos) &&
|
|
|
|
!bitmap_get(tips, pos) &&
|
|
|
|
get_size_by_pos(bitmap_git, pos) >= limit)
|
|
|
|
bitmap_unset(to_filter, pos);
|
|
|
|
}
|
|
|
|
|
|
|
|
bitmap_free(tips);
|
|
|
|
}
|
|
|
|
|
2020-05-04 23:12:35 +00:00
|
|
|
static void filter_bitmap_tree_depth(struct bitmap_index *bitmap_git,
|
|
|
|
struct object_list *tip_objects,
|
|
|
|
struct bitmap *to_filter,
|
|
|
|
unsigned long limit)
|
|
|
|
{
|
|
|
|
if (limit)
|
|
|
|
BUG("filter_bitmap_tree_depth given non-zero limit");
|
|
|
|
|
|
|
|
filter_bitmap_exclude_type(bitmap_git, tip_objects, to_filter,
|
|
|
|
OBJ_TREE);
|
|
|
|
filter_bitmap_exclude_type(bitmap_git, tip_objects, to_filter,
|
|
|
|
OBJ_BLOB);
|
|
|
|
}
|
|
|
|
|
2021-04-19 11:46:58 +00:00
|
|
|
static void filter_bitmap_object_type(struct bitmap_index *bitmap_git,
|
|
|
|
struct object_list *tip_objects,
|
|
|
|
struct bitmap *to_filter,
|
|
|
|
enum object_type object_type)
|
|
|
|
{
|
|
|
|
if (object_type < OBJ_COMMIT || object_type > OBJ_TAG)
|
|
|
|
BUG("filter_bitmap_object_type given invalid object");
|
|
|
|
|
|
|
|
if (object_type != OBJ_TAG)
|
|
|
|
filter_bitmap_exclude_type(bitmap_git, tip_objects, to_filter, OBJ_TAG);
|
|
|
|
if (object_type != OBJ_COMMIT)
|
|
|
|
filter_bitmap_exclude_type(bitmap_git, tip_objects, to_filter, OBJ_COMMIT);
|
|
|
|
if (object_type != OBJ_TREE)
|
|
|
|
filter_bitmap_exclude_type(bitmap_git, tip_objects, to_filter, OBJ_TREE);
|
|
|
|
if (object_type != OBJ_BLOB)
|
|
|
|
filter_bitmap_exclude_type(bitmap_git, tip_objects, to_filter, OBJ_BLOB);
|
|
|
|
}
|
|
|
|
|
2020-02-14 18:22:29 +00:00
|
|
|
static int filter_bitmap(struct bitmap_index *bitmap_git,
|
|
|
|
struct object_list *tip_objects,
|
|
|
|
struct bitmap *to_filter,
|
|
|
|
struct list_objects_filter_options *filter)
|
|
|
|
{
|
|
|
|
if (!filter || filter->choice == LOFC_DISABLED)
|
|
|
|
return 0;
|
|
|
|
|
2020-02-14 18:22:36 +00:00
|
|
|
if (filter->choice == LOFC_BLOB_NONE) {
|
|
|
|
if (bitmap_git)
|
|
|
|
filter_bitmap_blob_none(bitmap_git, tip_objects,
|
|
|
|
to_filter);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2020-02-14 18:22:39 +00:00
|
|
|
if (filter->choice == LOFC_BLOB_LIMIT) {
|
|
|
|
if (bitmap_git)
|
|
|
|
filter_bitmap_blob_limit(bitmap_git, tip_objects,
|
|
|
|
to_filter,
|
|
|
|
filter->blob_limit_value);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2020-05-04 23:12:35 +00:00
|
|
|
if (filter->choice == LOFC_TREE_DEPTH &&
|
|
|
|
filter->tree_exclude_depth == 0) {
|
|
|
|
if (bitmap_git)
|
|
|
|
filter_bitmap_tree_depth(bitmap_git, tip_objects,
|
|
|
|
to_filter,
|
|
|
|
filter->tree_exclude_depth);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2021-04-19 11:46:58 +00:00
|
|
|
if (filter->choice == LOFC_OBJECT_TYPE) {
|
|
|
|
if (bitmap_git)
|
|
|
|
filter_bitmap_object_type(bitmap_git, tip_objects,
|
|
|
|
to_filter,
|
|
|
|
filter->object_type);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2021-04-19 11:47:02 +00:00
|
|
|
if (filter->choice == LOFC_COMBINE) {
|
|
|
|
int i;
|
|
|
|
for (i = 0; i < filter->sub_nr; i++) {
|
|
|
|
if (filter_bitmap(bitmap_git, tip_objects, to_filter,
|
|
|
|
&filter->sub[i]) < 0)
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2020-02-14 18:22:29 +00:00
|
|
|
/* filter choice not handled */
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int can_filter_bitmap(struct list_objects_filter_options *filter)
|
|
|
|
{
|
|
|
|
return !filter_bitmap(NULL, NULL, NULL, filter);
|
|
|
|
}
|
|
|
|
|
|
|
|
struct bitmap_index *prepare_bitmap_walk(struct rev_info *revs,
|
2021-04-19 11:47:06 +00:00
|
|
|
struct list_objects_filter_options *filter,
|
|
|
|
int filter_provided_objects)
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
{
|
|
|
|
unsigned int i;
|
|
|
|
|
|
|
|
struct object_list *wants = NULL;
|
|
|
|
struct object_list *haves = NULL;
|
|
|
|
|
|
|
|
struct bitmap *wants_bitmap = NULL;
|
|
|
|
struct bitmap *haves_bitmap = NULL;
|
|
|
|
|
2020-02-14 18:22:16 +00:00
|
|
|
struct bitmap_index *bitmap_git;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We can't do pathspec limiting with bitmaps, because we don't know
|
|
|
|
* which commits are associated with which object changes (let alone
|
|
|
|
* even which objects are associated with which paths).
|
|
|
|
*/
|
|
|
|
if (revs->prune)
|
|
|
|
return NULL;
|
|
|
|
|
2020-02-14 18:22:29 +00:00
|
|
|
if (!can_filter_bitmap(filter))
|
|
|
|
return NULL;
|
|
|
|
|
2018-06-07 19:04:13 +00:00
|
|
|
/* try to open a bitmapped pack, but don't parse it yet
|
|
|
|
* because we may not need to use it */
|
2021-03-13 16:17:22 +00:00
|
|
|
CALLOC_ARRAY(bitmap_git, 1);
|
2021-08-31 20:52:21 +00:00
|
|
|
if (open_bitmap(revs->repo, bitmap_git) < 0)
|
2018-06-07 19:04:14 +00:00
|
|
|
goto cleanup;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
2017-09-22 23:34:54 +00:00
|
|
|
for (i = 0; i < revs->pending.nr; ++i) {
|
|
|
|
struct object *object = revs->pending.objects[i].item;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
|
|
|
if (object->type == OBJ_NONE)
|
object: convert parse_object* to take struct object_id
Make parse_object, parse_object_or_die, and parse_object_buffer take a
pointer to struct object_id. Remove the temporary variables inserted
earlier, since they are no longer necessary. Transform all of the
callers using the following semantic patch:
@@
expression E1;
@@
- parse_object(E1.hash)
+ parse_object(&E1)
@@
expression E1;
@@
- parse_object(E1->hash)
+ parse_object(E1)
@@
expression E1, E2;
@@
- parse_object_or_die(E1.hash, E2)
+ parse_object_or_die(&E1, E2)
@@
expression E1, E2;
@@
- parse_object_or_die(E1->hash, E2)
+ parse_object_or_die(E1, E2)
@@
expression E1, E2, E3, E4, E5;
@@
- parse_object_buffer(E1.hash, E2, E3, E4, E5)
+ parse_object_buffer(&E1, E2, E3, E4, E5)
@@
expression E1, E2, E3, E4, E5;
@@
- parse_object_buffer(E1->hash, E2, E3, E4, E5)
+ parse_object_buffer(E1, E2, E3, E4, E5)
Signed-off-by: brian m. carlson <sandals@crustytoothpaste.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2017-05-06 22:10:38 +00:00
|
|
|
parse_object_or_die(&object->oid, NULL);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
|
|
|
while (object->type == OBJ_TAG) {
|
|
|
|
struct tag *tag = (struct tag *) object;
|
|
|
|
|
|
|
|
if (object->flags & UNINTERESTING)
|
|
|
|
object_list_insert(object, &haves);
|
|
|
|
else
|
|
|
|
object_list_insert(object, &wants);
|
|
|
|
|
2019-09-05 19:55:55 +00:00
|
|
|
object = parse_object_or_die(get_tagged_oid(tag), NULL);
|
pack-bitmap: avoid traversal of objects referenced by uninteresting tag
When preparing the bitmap walk, we first establish the set of of have
and want objects by iterating over the set of pending objects: if an
object is marked as uninteresting, it's declared as an object we already
have, otherwise as an object we want. These two sets are then used to
compute which transitively referenced objects we need to obtain.
One special case here are tag objects: when a tag is requested, we
resolve it to its first not-tag object and add both resolved objects as
well as the tag itself into either the have or want set. Given that the
uninteresting-property always propagates to referenced objects, it is
clear that if the tag is uninteresting, so are its children and vice
versa. But we fail to propagate the flag, which effectively means that
referenced objects will always be interesting except for the case where
they have already been marked as uninteresting explicitly.
This mislabeling does not impact correctness: we now have it in our
"wants" set, and given that we later do an `AND NOT` of the bitmaps of
"wants" and "haves" sets it is clear that the result must be the same.
But we now start to needlessly traverse the tag's referenced objects in
case it is uninteresting, even though we know that each referenced
object will be uninteresting anyway. In the worst case, this can lead to
a complete graph walk just to establish that we do not care for any
object.
Fix the issue by propagating the `UNINTERESTING` flag to pointees of tag
objects and add a benchmark with negative revisions to p5310. This shows
some nice performance benefits, tested with linux.git:
Test HEAD~ HEAD
---------------------------------------------------------------------------------------------------------------
5310.3: repack to disk 193.18(181.46+16.42) 194.61(183.41+15.83) +0.7%
5310.4: simulated clone 25.93(24.88+1.05) 25.81(24.73+1.08) -0.5%
5310.5: simulated fetch 2.64(5.30+0.69) 2.59(5.16+0.65) -1.9%
5310.6: pack to file (bitmap) 58.75(57.56+6.30) 58.29(57.61+5.73) -0.8%
5310.7: rev-list (commits) 1.45(1.18+0.26) 1.46(1.22+0.24) +0.7%
5310.8: rev-list (objects) 15.35(14.22+1.13) 15.30(14.23+1.07) -0.3%
5310.9: rev-list with tag negated via --not --all (objects) 22.49(20.93+1.56) 0.11(0.09+0.01) -99.5%
5310.10: rev-list with negative tag (objects) 0.61(0.44+0.16) 0.51(0.35+0.16) -16.4%
5310.11: rev-list count with blob:none 12.15(11.19+0.96) 12.18(11.19+0.99) +0.2%
5310.12: rev-list count with blob:limit=1k 17.77(15.71+2.06) 17.75(15.63+2.12) -0.1%
5310.13: rev-list count with tree:0 1.69(1.31+0.38) 1.68(1.28+0.39) -0.6%
5310.14: simulated partial clone 20.14(19.15+0.98) 19.98(18.93+1.05) -0.8%
5310.16: clone (partial bitmap) 12.78(13.89+1.07) 12.72(13.99+1.01) -0.5%
5310.17: pack to file (partial bitmap) 42.07(45.44+2.72) 41.44(44.66+2.80) -1.5%
5310.18: rev-list with tree filter (partial bitmap) 0.44(0.29+0.15) 0.46(0.32+0.14) +4.5%
While most benchmarks are probably in the range of noise, the newly
added 5310.9 and 5310.10 benchmarks consistenly perform better.
Signed-off-by: Patrick Steinhardt <ps@pks.im>.
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-03-22 12:19:06 +00:00
|
|
|
object->flags |= (tag->object.flags & UNINTERESTING);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if (object->flags & UNINTERESTING)
|
|
|
|
object_list_insert(object, &haves);
|
|
|
|
else
|
|
|
|
object_list_insert(object, &wants);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* if we have a HAVES list, but none of those haves is contained
|
|
|
|
* in the packfile that has a bitmap, we don't have anything to
|
|
|
|
* optimize here
|
|
|
|
*/
|
2018-06-07 19:04:13 +00:00
|
|
|
if (haves && !in_bitmapped_pack(bitmap_git, haves))
|
2018-06-07 19:04:14 +00:00
|
|
|
goto cleanup;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
|
|
|
/* if we don't want anything, we're done here */
|
|
|
|
if (!wants)
|
2018-06-07 19:04:14 +00:00
|
|
|
goto cleanup;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* now we're going to use bitmaps, so load the actual bitmap entries
|
|
|
|
* from disk. this is the point of no return; after this the rev_list
|
|
|
|
* becomes invalidated and we must perform the revwalk through bitmaps
|
|
|
|
*/
|
2021-08-31 20:52:21 +00:00
|
|
|
if (load_bitmap(bitmap_git) < 0)
|
2018-06-07 19:04:14 +00:00
|
|
|
goto cleanup;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
2017-09-22 23:34:54 +00:00
|
|
|
object_array_clear(&revs->pending);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
|
|
|
if (haves) {
|
add `ignore_missing_links` mode to revwalk
When pack-objects is computing the reachability bitmap to
serve a fetch request, it can erroneously die() if some of
the UNINTERESTING objects are not present. Upload-pack
throws away HAVE lines from the client for objects we do not
have, but we may have a tip object without all of its
ancestors (e.g., if the tip is no longer reachable and was
new enough to survive a `git prune`, but some of its
reachable objects did get pruned).
In the non-bitmap case, we do a revision walk with the HAVE
objects marked as UNINTERESTING. The revision walker
explicitly ignores errors in accessing UNINTERESTING commits
to handle this case (and we do not bother looking at
UNINTERESTING trees or blobs at all).
When we have bitmaps, however, the process is quite
different. The bitmap index for a pack-objects run is
calculated in two separate steps:
First, we perform an extensive walk from all the HAVEs to
find the full set of objects reachable from them. This walk
is usually optimized away because we are expected to hit an
object with a bitmap during the traversal, which allows us
to terminate early.
Secondly, we perform an extensive walk from all the WANTs,
which usually also terminates early because we hit a commit
with an existing bitmap.
Once we have the resulting bitmaps from the two walks, we
AND-NOT them together to obtain the resulting set of objects
we need to pack.
When we are walking the HAVE objects, the revision walker
does not know that we are walking it only to mark the
results as uninteresting. We strip out the UNINTERESTING flag,
because those objects _are_ interesting to us during the
first walk. We want to keep going to get a complete set of
reachable objects if we can.
We need some way to tell the revision walker that it's OK to
silently truncate the HAVE walk, just like it does for the
UNINTERESTING case. This patch introduces a new
`ignore_missing_links` flag to the `rev_info` struct, which
we set only for the HAVE walk.
It also adds tests to cover UNINTERESTING objects missing
from several positions: a missing blob, a missing tree, and
a missing parent commit. The missing blob already worked (as
we do not care about its contents at all), but the other two
cases caused us to die().
Note that there are a few cases we do not need to test:
1. We do not need to test a missing tree, with the blob
still present. Without the tree that refers to it, we
would not know that the blob is relevant to our walk.
2. We do not need to test a tip commit that is missing.
Upload-pack omits these for us (and in fact, we
complain even in the non-bitmap case if it fails to do
so).
Reported-by: Siddharth Agarwal <sid0@fb.com>
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2014-03-28 10:00:43 +00:00
|
|
|
revs->ignore_missing_links = 1;
|
pack-bitmap: pass object filter to fill-in traversal
Sometimes a bitmap traversal still has to walk some commits manually,
because those commits aren't included in the bitmap packfile (e.g., due
to a push or commit since the last full repack). If we're given an
object filter, we don't pass it down to this traversal. It's not
necessary for correctness because the bitmap code has its own filters to
post-process the bitmap result (which it must, to filter out the objects
that _are_ mentioned in the bitmapped packfile).
And with blob filters, there was no performance reason to pass along
those filters, either. The fill-in traversal could omit them from the
result, but it wouldn't save us any time to do so, since we'd still have
to walk each tree entry to see if it's a blob or not.
But now that we support tree filters, there's opportunity for savings. A
tree:depth=0 filter means we can avoid accessing trees entirely, since
we know we won't them (or any of the subtrees or blobs they point to).
The new test in p5310 shows this off (the "partial bitmap" state is one
where HEAD~100 and its ancestors are all in a bitmapped pack, but
HEAD~100..HEAD are not). Here are the results (run against linux.git):
Test HEAD^ HEAD
-------------------------------------------------------------------------------------------------
[...]
5310.16: rev-list with tree filter (partial bitmap) 0.19(0.17+0.02) 0.03(0.02+0.01) -84.2%
The absolute number of savings isn't _huge_, but keep in mind that we
only omitted 100 first-parent links (in the version of linux.git here,
that's 894 actual commits). In a more pathological case, we might have a
much larger proportion of non-bitmapped commits. I didn't bother
creating such a case in the perf script because the setup is expensive,
and this is plenty to show the savings as a percentage.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-05-04 23:12:38 +00:00
|
|
|
haves_bitmap = find_objects(bitmap_git, revs, haves, NULL,
|
|
|
|
filter);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
reset_revision_walk();
|
add `ignore_missing_links` mode to revwalk
When pack-objects is computing the reachability bitmap to
serve a fetch request, it can erroneously die() if some of
the UNINTERESTING objects are not present. Upload-pack
throws away HAVE lines from the client for objects we do not
have, but we may have a tip object without all of its
ancestors (e.g., if the tip is no longer reachable and was
new enough to survive a `git prune`, but some of its
reachable objects did get pruned).
In the non-bitmap case, we do a revision walk with the HAVE
objects marked as UNINTERESTING. The revision walker
explicitly ignores errors in accessing UNINTERESTING commits
to handle this case (and we do not bother looking at
UNINTERESTING trees or blobs at all).
When we have bitmaps, however, the process is quite
different. The bitmap index for a pack-objects run is
calculated in two separate steps:
First, we perform an extensive walk from all the HAVEs to
find the full set of objects reachable from them. This walk
is usually optimized away because we are expected to hit an
object with a bitmap during the traversal, which allows us
to terminate early.
Secondly, we perform an extensive walk from all the WANTs,
which usually also terminates early because we hit a commit
with an existing bitmap.
Once we have the resulting bitmaps from the two walks, we
AND-NOT them together to obtain the resulting set of objects
we need to pack.
When we are walking the HAVE objects, the revision walker
does not know that we are walking it only to mark the
results as uninteresting. We strip out the UNINTERESTING flag,
because those objects _are_ interesting to us during the
first walk. We want to keep going to get a complete set of
reachable objects if we can.
We need some way to tell the revision walker that it's OK to
silently truncate the HAVE walk, just like it does for the
UNINTERESTING case. This patch introduces a new
`ignore_missing_links` flag to the `rev_info` struct, which
we set only for the HAVE walk.
It also adds tests to cover UNINTERESTING objects missing
from several positions: a missing blob, a missing tree, and
a missing parent commit. The missing blob already worked (as
we do not care about its contents at all), but the other two
cases caused us to die().
Note that there are a few cases we do not need to test:
1. We do not need to test a missing tree, with the blob
still present. Without the tree that refers to it, we
would not know that the blob is relevant to our walk.
2. We do not need to test a tip commit that is missing.
Upload-pack omits these for us (and in fact, we
complain even in the non-bitmap case if it fails to do
so).
Reported-by: Siddharth Agarwal <sid0@fb.com>
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2014-03-28 10:00:43 +00:00
|
|
|
revs->ignore_missing_links = 0;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
|
|
|
if (haves_bitmap == NULL)
|
2018-05-02 09:38:39 +00:00
|
|
|
BUG("failed to perform bitmap walk");
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
}
|
|
|
|
|
pack-bitmap: pass object filter to fill-in traversal
Sometimes a bitmap traversal still has to walk some commits manually,
because those commits aren't included in the bitmap packfile (e.g., due
to a push or commit since the last full repack). If we're given an
object filter, we don't pass it down to this traversal. It's not
necessary for correctness because the bitmap code has its own filters to
post-process the bitmap result (which it must, to filter out the objects
that _are_ mentioned in the bitmapped packfile).
And with blob filters, there was no performance reason to pass along
those filters, either. The fill-in traversal could omit them from the
result, but it wouldn't save us any time to do so, since we'd still have
to walk each tree entry to see if it's a blob or not.
But now that we support tree filters, there's opportunity for savings. A
tree:depth=0 filter means we can avoid accessing trees entirely, since
we know we won't them (or any of the subtrees or blobs they point to).
The new test in p5310 shows this off (the "partial bitmap" state is one
where HEAD~100 and its ancestors are all in a bitmapped pack, but
HEAD~100..HEAD are not). Here are the results (run against linux.git):
Test HEAD^ HEAD
-------------------------------------------------------------------------------------------------
[...]
5310.16: rev-list with tree filter (partial bitmap) 0.19(0.17+0.02) 0.03(0.02+0.01) -84.2%
The absolute number of savings isn't _huge_, but keep in mind that we
only omitted 100 first-parent links (in the version of linux.git here,
that's 894 actual commits). In a more pathological case, we might have a
much larger proportion of non-bitmapped commits. I didn't bother
creating such a case in the perf script because the setup is expensive,
and this is plenty to show the savings as a percentage.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-05-04 23:12:38 +00:00
|
|
|
wants_bitmap = find_objects(bitmap_git, revs, wants, haves_bitmap,
|
|
|
|
filter);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
|
|
|
if (!wants_bitmap)
|
2018-05-02 09:38:39 +00:00
|
|
|
BUG("failed to perform bitmap walk");
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
|
|
|
if (haves_bitmap)
|
|
|
|
bitmap_and_not(wants_bitmap, haves_bitmap);
|
|
|
|
|
2021-04-19 11:47:06 +00:00
|
|
|
filter_bitmap(bitmap_git, (filter && filter_provided_objects) ? NULL : wants,
|
|
|
|
wants_bitmap, filter);
|
2020-02-14 18:22:29 +00:00
|
|
|
|
2018-06-07 19:04:13 +00:00
|
|
|
bitmap_git->result = wants_bitmap;
|
pack-bitmap: save "have" bitmap from walk
When we do a bitmap walk, we save the result, which
represents (WANTs & ~HAVEs); i.e., every object we care
about visiting in our walk. However, we throw away the
haves bitmap, which can sometimes be useful, too. Save it
and provide an access function so code which has performed a
walk can query it.
A few notes on the accessor interface:
- the bitmap code calls these "haves" because it grew out
of the want/have negotiation for fetches. But really,
these are simply the objects that would be flagged
UNINTERESTING in a regular traversal. Let's use that
more universal nomenclature for the external module
interface. We may want to change the internal naming
inside the bitmap code, but that's outside the scope of
this patch.
- it still uses a bare "sha1" rather than "oid". That's
true of all of the bitmap code. And in this particular
instance, our caller in pack-objects is dealing with the
bare sha1 that comes from a packed REF_DELTA (we're
pointing directly to the mmap'd pack on disk). That's
something we'll have to deal with as we transition to a
new hash, but we can wait and see how the caller ends up
being fixed and adjust this interface accordingly.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2018-08-21 19:07:01 +00:00
|
|
|
bitmap_git->haves = haves_bitmap;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
2020-02-13 02:16:33 +00:00
|
|
|
object_list_free(&wants);
|
|
|
|
object_list_free(&haves);
|
|
|
|
|
2018-06-07 19:04:13 +00:00
|
|
|
return bitmap_git;
|
2018-06-07 19:04:14 +00:00
|
|
|
|
|
|
|
cleanup:
|
|
|
|
free_bitmap_index(bitmap_git);
|
2020-02-13 02:16:33 +00:00
|
|
|
object_list_free(&wants);
|
|
|
|
object_list_free(&haves);
|
2018-06-07 19:04:14 +00:00
|
|
|
return NULL;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
}
|
|
|
|
|
2021-08-31 20:52:19 +00:00
|
|
|
/*
|
|
|
|
* -1 means "stop trying further objects"; 0 means we may or may not have
|
|
|
|
* reused, but you can keep feeding bits.
|
|
|
|
*/
|
2021-09-09 19:57:21 +00:00
|
|
|
static int try_partial_reuse(struct packed_git *pack,
|
2021-08-31 20:52:19 +00:00
|
|
|
size_t pos,
|
|
|
|
struct bitmap *reuse,
|
|
|
|
struct pack_window **w_curs)
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
{
|
2021-08-31 20:52:21 +00:00
|
|
|
off_t offset, delta_obj_offset;
|
pack-objects: improve partial packfile reuse
The old code to reuse deltas from an existing packfile
just tried to dump a whole segment of the pack verbatim.
That's faster than the traditional way of actually adding
objects to the packing list, but it didn't kick in very
often. This new code is really going for a middle ground:
do _some_ per-object work, but way less than we'd
traditionally do.
The general strategy of the new code is to make a bitmap
of objects from the packfile we'll include, and then
iterate over it, writing out each object exactly as it is
in our on-disk pack, but _not_ adding it to our packlist
(which costs memory, and increases the search space for
deltas).
One complication is that if we're omitting some objects,
we can't set a delta against a base that we're not
sending. So we have to check each object in
try_partial_reuse() to make sure we have its delta.
About performance, in the worst case we might have
interleaved objects that we are sending or not sending,
and we'd have as many chunks as objects. But in practice
we send big chunks.
For instance, packing torvalds/linux on GitHub servers
now reused 6.5M objects, but only needed ~50k chunks.
Helped-by: Jonathan Tan <jonathantanmy@google.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Christian Couder <chriscool@tuxfamily.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2019-12-18 11:25:45 +00:00
|
|
|
enum object_type type;
|
|
|
|
unsigned long size;
|
|
|
|
|
2021-08-31 20:52:21 +00:00
|
|
|
/*
|
|
|
|
* try_partial_reuse() is called either on (a) objects in the
|
|
|
|
* bitmapped pack (in the case of a single-pack bitmap) or (b)
|
|
|
|
* objects in the preferred pack of a multi-pack bitmap.
|
|
|
|
* Importantly, the latter can pretend as if only a single pack
|
|
|
|
* exists because:
|
|
|
|
*
|
|
|
|
* - The first pack->num_objects bits of a MIDX bitmap are
|
|
|
|
* reserved for the preferred pack, and
|
|
|
|
*
|
|
|
|
* - Ties due to duplicate objects are always resolved in
|
|
|
|
* favor of the preferred pack.
|
|
|
|
*
|
|
|
|
* Therefore we do not need to ever ask the MIDX for its copy of
|
|
|
|
* an object by OID, since it will always select it from the
|
|
|
|
* preferred pack. Likewise, the selected copy of the base
|
|
|
|
* object for any deltas will reside in the same pack.
|
|
|
|
*
|
|
|
|
* This means that we can reuse pos when looking up the bit in
|
|
|
|
* the reuse bitmap, too, since bits corresponding to the
|
|
|
|
* preferred pack precede all bits from other packs.
|
|
|
|
*/
|
|
|
|
|
|
|
|
if (pos >= pack->num_objects)
|
|
|
|
return -1; /* not actually in the pack or MIDX preferred pack */
|
pack-objects: improve partial packfile reuse
The old code to reuse deltas from an existing packfile
just tried to dump a whole segment of the pack verbatim.
That's faster than the traditional way of actually adding
objects to the packing list, but it didn't kick in very
often. This new code is really going for a middle ground:
do _some_ per-object work, but way less than we'd
traditionally do.
The general strategy of the new code is to make a bitmap
of objects from the packfile we'll include, and then
iterate over it, writing out each object exactly as it is
in our on-disk pack, but _not_ adding it to our packlist
(which costs memory, and increases the search space for
deltas).
One complication is that if we're omitting some objects,
we can't set a delta against a base that we're not
sending. So we have to check each object in
try_partial_reuse() to make sure we have its delta.
About performance, in the worst case we might have
interleaved objects that we are sending or not sending,
and we'd have as many chunks as objects. But in practice
we send big chunks.
For instance, packing torvalds/linux on GitHub servers
now reused 6.5M objects, but only needed ~50k chunks.
Helped-by: Jonathan Tan <jonathantanmy@google.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Christian Couder <chriscool@tuxfamily.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2019-12-18 11:25:45 +00:00
|
|
|
|
2021-08-31 20:52:21 +00:00
|
|
|
offset = delta_obj_offset = pack_pos_to_offset(pack, pos);
|
|
|
|
type = unpack_object_header(pack, w_curs, &offset, &size);
|
pack-objects: improve partial packfile reuse
The old code to reuse deltas from an existing packfile
just tried to dump a whole segment of the pack verbatim.
That's faster than the traditional way of actually adding
objects to the packing list, but it didn't kick in very
often. This new code is really going for a middle ground:
do _some_ per-object work, but way less than we'd
traditionally do.
The general strategy of the new code is to make a bitmap
of objects from the packfile we'll include, and then
iterate over it, writing out each object exactly as it is
in our on-disk pack, but _not_ adding it to our packlist
(which costs memory, and increases the search space for
deltas).
One complication is that if we're omitting some objects,
we can't set a delta against a base that we're not
sending. So we have to check each object in
try_partial_reuse() to make sure we have its delta.
About performance, in the worst case we might have
interleaved objects that we are sending or not sending,
and we'd have as many chunks as objects. But in practice
we send big chunks.
For instance, packing torvalds/linux on GitHub servers
now reused 6.5M objects, but only needed ~50k chunks.
Helped-by: Jonathan Tan <jonathantanmy@google.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Christian Couder <chriscool@tuxfamily.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2019-12-18 11:25:45 +00:00
|
|
|
if (type < 0)
|
2021-08-31 20:52:19 +00:00
|
|
|
return -1; /* broken packfile, punt */
|
pack-objects: improve partial packfile reuse
The old code to reuse deltas from an existing packfile
just tried to dump a whole segment of the pack verbatim.
That's faster than the traditional way of actually adding
objects to the packing list, but it didn't kick in very
often. This new code is really going for a middle ground:
do _some_ per-object work, but way less than we'd
traditionally do.
The general strategy of the new code is to make a bitmap
of objects from the packfile we'll include, and then
iterate over it, writing out each object exactly as it is
in our on-disk pack, but _not_ adding it to our packlist
(which costs memory, and increases the search space for
deltas).
One complication is that if we're omitting some objects,
we can't set a delta against a base that we're not
sending. So we have to check each object in
try_partial_reuse() to make sure we have its delta.
About performance, in the worst case we might have
interleaved objects that we are sending or not sending,
and we'd have as many chunks as objects. But in practice
we send big chunks.
For instance, packing torvalds/linux on GitHub servers
now reused 6.5M objects, but only needed ~50k chunks.
Helped-by: Jonathan Tan <jonathantanmy@google.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Christian Couder <chriscool@tuxfamily.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2019-12-18 11:25:45 +00:00
|
|
|
|
|
|
|
if (type == OBJ_REF_DELTA || type == OBJ_OFS_DELTA) {
|
|
|
|
off_t base_offset;
|
2021-01-13 22:24:05 +00:00
|
|
|
uint32_t base_pos;
|
pack-objects: improve partial packfile reuse
The old code to reuse deltas from an existing packfile
just tried to dump a whole segment of the pack verbatim.
That's faster than the traditional way of actually adding
objects to the packing list, but it didn't kick in very
often. This new code is really going for a middle ground:
do _some_ per-object work, but way less than we'd
traditionally do.
The general strategy of the new code is to make a bitmap
of objects from the packfile we'll include, and then
iterate over it, writing out each object exactly as it is
in our on-disk pack, but _not_ adding it to our packlist
(which costs memory, and increases the search space for
deltas).
One complication is that if we're omitting some objects,
we can't set a delta against a base that we're not
sending. So we have to check each object in
try_partial_reuse() to make sure we have its delta.
About performance, in the worst case we might have
interleaved objects that we are sending or not sending,
and we'd have as many chunks as objects. But in practice
we send big chunks.
For instance, packing torvalds/linux on GitHub servers
now reused 6.5M objects, but only needed ~50k chunks.
Helped-by: Jonathan Tan <jonathantanmy@google.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Christian Couder <chriscool@tuxfamily.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2019-12-18 11:25:45 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Find the position of the base object so we can look it up
|
|
|
|
* in our bitmaps. If we can't come up with an offset, or if
|
|
|
|
* that offset is not in the revidx, the pack is corrupt.
|
|
|
|
* There's nothing we can do, so just punt on this object,
|
|
|
|
* and the normal slow path will complain about it in
|
|
|
|
* more detail.
|
|
|
|
*/
|
2021-08-31 20:52:21 +00:00
|
|
|
base_offset = get_delta_base(pack, w_curs, &offset, type,
|
|
|
|
delta_obj_offset);
|
pack-objects: improve partial packfile reuse
The old code to reuse deltas from an existing packfile
just tried to dump a whole segment of the pack verbatim.
That's faster than the traditional way of actually adding
objects to the packing list, but it didn't kick in very
often. This new code is really going for a middle ground:
do _some_ per-object work, but way less than we'd
traditionally do.
The general strategy of the new code is to make a bitmap
of objects from the packfile we'll include, and then
iterate over it, writing out each object exactly as it is
in our on-disk pack, but _not_ adding it to our packlist
(which costs memory, and increases the search space for
deltas).
One complication is that if we're omitting some objects,
we can't set a delta against a base that we're not
sending. So we have to check each object in
try_partial_reuse() to make sure we have its delta.
About performance, in the worst case we might have
interleaved objects that we are sending or not sending,
and we'd have as many chunks as objects. But in practice
we send big chunks.
For instance, packing torvalds/linux on GitHub servers
now reused 6.5M objects, but only needed ~50k chunks.
Helped-by: Jonathan Tan <jonathantanmy@google.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Christian Couder <chriscool@tuxfamily.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2019-12-18 11:25:45 +00:00
|
|
|
if (!base_offset)
|
2021-08-31 20:52:19 +00:00
|
|
|
return 0;
|
2021-08-31 20:52:21 +00:00
|
|
|
if (offset_to_pack_pos(pack, base_offset, &base_pos) < 0)
|
2021-08-31 20:52:19 +00:00
|
|
|
return 0;
|
pack-objects: improve partial packfile reuse
The old code to reuse deltas from an existing packfile
just tried to dump a whole segment of the pack verbatim.
That's faster than the traditional way of actually adding
objects to the packing list, but it didn't kick in very
often. This new code is really going for a middle ground:
do _some_ per-object work, but way less than we'd
traditionally do.
The general strategy of the new code is to make a bitmap
of objects from the packfile we'll include, and then
iterate over it, writing out each object exactly as it is
in our on-disk pack, but _not_ adding it to our packlist
(which costs memory, and increases the search space for
deltas).
One complication is that if we're omitting some objects,
we can't set a delta against a base that we're not
sending. So we have to check each object in
try_partial_reuse() to make sure we have its delta.
About performance, in the worst case we might have
interleaved objects that we are sending or not sending,
and we'd have as many chunks as objects. But in practice
we send big chunks.
For instance, packing torvalds/linux on GitHub servers
now reused 6.5M objects, but only needed ~50k chunks.
Helped-by: Jonathan Tan <jonathantanmy@google.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Christian Couder <chriscool@tuxfamily.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2019-12-18 11:25:45 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* We assume delta dependencies always point backwards. This
|
|
|
|
* lets us do a single pass, and is basically always true
|
|
|
|
* due to the way OFS_DELTAs work. You would not typically
|
|
|
|
* find REF_DELTA in a bitmapped pack, since we only bitmap
|
|
|
|
* packs we write fresh, and OFS_DELTA is the default). But
|
|
|
|
* let's double check to make sure the pack wasn't written with
|
|
|
|
* odd parameters.
|
|
|
|
*/
|
|
|
|
if (base_pos >= pos)
|
2021-08-31 20:52:19 +00:00
|
|
|
return 0;
|
pack-objects: improve partial packfile reuse
The old code to reuse deltas from an existing packfile
just tried to dump a whole segment of the pack verbatim.
That's faster than the traditional way of actually adding
objects to the packing list, but it didn't kick in very
often. This new code is really going for a middle ground:
do _some_ per-object work, but way less than we'd
traditionally do.
The general strategy of the new code is to make a bitmap
of objects from the packfile we'll include, and then
iterate over it, writing out each object exactly as it is
in our on-disk pack, but _not_ adding it to our packlist
(which costs memory, and increases the search space for
deltas).
One complication is that if we're omitting some objects,
we can't set a delta against a base that we're not
sending. So we have to check each object in
try_partial_reuse() to make sure we have its delta.
About performance, in the worst case we might have
interleaved objects that we are sending or not sending,
and we'd have as many chunks as objects. But in practice
we send big chunks.
For instance, packing torvalds/linux on GitHub servers
now reused 6.5M objects, but only needed ~50k chunks.
Helped-by: Jonathan Tan <jonathantanmy@google.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Christian Couder <chriscool@tuxfamily.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2019-12-18 11:25:45 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* And finally, if we're not sending the base as part of our
|
|
|
|
* reuse chunk, then don't send this object either. The base
|
|
|
|
* would come after us, along with other objects not
|
|
|
|
* necessarily in the pack, which means we'd need to convert
|
|
|
|
* to REF_DELTA on the fly. Better to just let the normal
|
|
|
|
* object_entry code path handle it.
|
|
|
|
*/
|
|
|
|
if (!bitmap_get(reuse, base_pos))
|
2021-08-31 20:52:19 +00:00
|
|
|
return 0;
|
pack-objects: improve partial packfile reuse
The old code to reuse deltas from an existing packfile
just tried to dump a whole segment of the pack verbatim.
That's faster than the traditional way of actually adding
objects to the packing list, but it didn't kick in very
often. This new code is really going for a middle ground:
do _some_ per-object work, but way less than we'd
traditionally do.
The general strategy of the new code is to make a bitmap
of objects from the packfile we'll include, and then
iterate over it, writing out each object exactly as it is
in our on-disk pack, but _not_ adding it to our packlist
(which costs memory, and increases the search space for
deltas).
One complication is that if we're omitting some objects,
we can't set a delta against a base that we're not
sending. So we have to check each object in
try_partial_reuse() to make sure we have its delta.
About performance, in the worst case we might have
interleaved objects that we are sending or not sending,
and we'd have as many chunks as objects. But in practice
we send big chunks.
For instance, packing torvalds/linux on GitHub servers
now reused 6.5M objects, but only needed ~50k chunks.
Helped-by: Jonathan Tan <jonathantanmy@google.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Christian Couder <chriscool@tuxfamily.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2019-12-18 11:25:45 +00:00
|
|
|
}
|
|
|
|
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
/*
|
pack-objects: improve partial packfile reuse
The old code to reuse deltas from an existing packfile
just tried to dump a whole segment of the pack verbatim.
That's faster than the traditional way of actually adding
objects to the packing list, but it didn't kick in very
often. This new code is really going for a middle ground:
do _some_ per-object work, but way less than we'd
traditionally do.
The general strategy of the new code is to make a bitmap
of objects from the packfile we'll include, and then
iterate over it, writing out each object exactly as it is
in our on-disk pack, but _not_ adding it to our packlist
(which costs memory, and increases the search space for
deltas).
One complication is that if we're omitting some objects,
we can't set a delta against a base that we're not
sending. So we have to check each object in
try_partial_reuse() to make sure we have its delta.
About performance, in the worst case we might have
interleaved objects that we are sending or not sending,
and we'd have as many chunks as objects. But in practice
we send big chunks.
For instance, packing torvalds/linux on GitHub servers
now reused 6.5M objects, but only needed ~50k chunks.
Helped-by: Jonathan Tan <jonathantanmy@google.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Christian Couder <chriscool@tuxfamily.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2019-12-18 11:25:45 +00:00
|
|
|
* If we got here, then the object is OK to reuse. Mark it.
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
*/
|
pack-objects: improve partial packfile reuse
The old code to reuse deltas from an existing packfile
just tried to dump a whole segment of the pack verbatim.
That's faster than the traditional way of actually adding
objects to the packing list, but it didn't kick in very
often. This new code is really going for a middle ground:
do _some_ per-object work, but way less than we'd
traditionally do.
The general strategy of the new code is to make a bitmap
of objects from the packfile we'll include, and then
iterate over it, writing out each object exactly as it is
in our on-disk pack, but _not_ adding it to our packlist
(which costs memory, and increases the search space for
deltas).
One complication is that if we're omitting some objects,
we can't set a delta against a base that we're not
sending. So we have to check each object in
try_partial_reuse() to make sure we have its delta.
About performance, in the worst case we might have
interleaved objects that we are sending or not sending,
and we'd have as many chunks as objects. But in practice
we send big chunks.
For instance, packing torvalds/linux on GitHub servers
now reused 6.5M objects, but only needed ~50k chunks.
Helped-by: Jonathan Tan <jonathantanmy@google.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Christian Couder <chriscool@tuxfamily.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2019-12-18 11:25:45 +00:00
|
|
|
bitmap_set(reuse, pos);
|
2021-08-31 20:52:19 +00:00
|
|
|
return 0;
|
pack-objects: improve partial packfile reuse
The old code to reuse deltas from an existing packfile
just tried to dump a whole segment of the pack verbatim.
That's faster than the traditional way of actually adding
objects to the packing list, but it didn't kick in very
often. This new code is really going for a middle ground:
do _some_ per-object work, but way less than we'd
traditionally do.
The general strategy of the new code is to make a bitmap
of objects from the packfile we'll include, and then
iterate over it, writing out each object exactly as it is
in our on-disk pack, but _not_ adding it to our packlist
(which costs memory, and increases the search space for
deltas).
One complication is that if we're omitting some objects,
we can't set a delta against a base that we're not
sending. So we have to check each object in
try_partial_reuse() to make sure we have its delta.
About performance, in the worst case we might have
interleaved objects that we are sending or not sending,
and we'd have as many chunks as objects. But in practice
we send big chunks.
For instance, packing torvalds/linux on GitHub servers
now reused 6.5M objects, but only needed ~50k chunks.
Helped-by: Jonathan Tan <jonathantanmy@google.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Christian Couder <chriscool@tuxfamily.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2019-12-18 11:25:45 +00:00
|
|
|
}
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
2021-08-31 20:52:21 +00:00
|
|
|
static uint32_t midx_preferred_pack(struct bitmap_index *bitmap_git)
|
|
|
|
{
|
|
|
|
struct multi_pack_index *m = bitmap_git->midx;
|
|
|
|
if (!m)
|
|
|
|
BUG("midx_preferred_pack: requires non-empty MIDX");
|
|
|
|
return nth_midxed_pack_int_id(m, pack_pos_to_midx(bitmap_git->midx, 0));
|
|
|
|
}
|
|
|
|
|
pack-objects: improve partial packfile reuse
The old code to reuse deltas from an existing packfile
just tried to dump a whole segment of the pack verbatim.
That's faster than the traditional way of actually adding
objects to the packing list, but it didn't kick in very
often. This new code is really going for a middle ground:
do _some_ per-object work, but way less than we'd
traditionally do.
The general strategy of the new code is to make a bitmap
of objects from the packfile we'll include, and then
iterate over it, writing out each object exactly as it is
in our on-disk pack, but _not_ adding it to our packlist
(which costs memory, and increases the search space for
deltas).
One complication is that if we're omitting some objects,
we can't set a delta against a base that we're not
sending. So we have to check each object in
try_partial_reuse() to make sure we have its delta.
About performance, in the worst case we might have
interleaved objects that we are sending or not sending,
and we'd have as many chunks as objects. But in practice
we send big chunks.
For instance, packing torvalds/linux on GitHub servers
now reused 6.5M objects, but only needed ~50k chunks.
Helped-by: Jonathan Tan <jonathantanmy@google.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Christian Couder <chriscool@tuxfamily.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2019-12-18 11:25:45 +00:00
|
|
|
int reuse_partial_packfile_from_bitmap(struct bitmap_index *bitmap_git,
|
|
|
|
struct packed_git **packfile_out,
|
|
|
|
uint32_t *entries,
|
|
|
|
struct bitmap **reuse_out)
|
|
|
|
{
|
2021-08-31 20:52:21 +00:00
|
|
|
struct packed_git *pack;
|
2018-06-07 19:04:13 +00:00
|
|
|
struct bitmap *result = bitmap_git->result;
|
pack-objects: improve partial packfile reuse
The old code to reuse deltas from an existing packfile
just tried to dump a whole segment of the pack verbatim.
That's faster than the traditional way of actually adding
objects to the packing list, but it didn't kick in very
often. This new code is really going for a middle ground:
do _some_ per-object work, but way less than we'd
traditionally do.
The general strategy of the new code is to make a bitmap
of objects from the packfile we'll include, and then
iterate over it, writing out each object exactly as it is
in our on-disk pack, but _not_ adding it to our packlist
(which costs memory, and increases the search space for
deltas).
One complication is that if we're omitting some objects,
we can't set a delta against a base that we're not
sending. So we have to check each object in
try_partial_reuse() to make sure we have its delta.
About performance, in the worst case we might have
interleaved objects that we are sending or not sending,
and we'd have as many chunks as objects. But in practice
we send big chunks.
For instance, packing torvalds/linux on GitHub servers
now reused 6.5M objects, but only needed ~50k chunks.
Helped-by: Jonathan Tan <jonathantanmy@google.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Christian Couder <chriscool@tuxfamily.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2019-12-18 11:25:45 +00:00
|
|
|
struct bitmap *reuse;
|
|
|
|
struct pack_window *w_curs = NULL;
|
|
|
|
size_t i = 0;
|
|
|
|
uint32_t offset;
|
2021-08-31 20:52:21 +00:00
|
|
|
uint32_t objects_nr;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
|
|
|
assert(result);
|
|
|
|
|
2021-08-31 20:52:21 +00:00
|
|
|
load_reverse_index(bitmap_git);
|
|
|
|
|
|
|
|
if (bitmap_is_midx(bitmap_git))
|
|
|
|
pack = bitmap_git->midx->packs[midx_preferred_pack(bitmap_git)];
|
|
|
|
else
|
|
|
|
pack = bitmap_git->pack;
|
|
|
|
objects_nr = pack->num_objects;
|
|
|
|
|
pack-objects: improve partial packfile reuse
The old code to reuse deltas from an existing packfile
just tried to dump a whole segment of the pack verbatim.
That's faster than the traditional way of actually adding
objects to the packing list, but it didn't kick in very
often. This new code is really going for a middle ground:
do _some_ per-object work, but way less than we'd
traditionally do.
The general strategy of the new code is to make a bitmap
of objects from the packfile we'll include, and then
iterate over it, writing out each object exactly as it is
in our on-disk pack, but _not_ adding it to our packlist
(which costs memory, and increases the search space for
deltas).
One complication is that if we're omitting some objects,
we can't set a delta against a base that we're not
sending. So we have to check each object in
try_partial_reuse() to make sure we have its delta.
About performance, in the worst case we might have
interleaved objects that we are sending or not sending,
and we'd have as many chunks as objects. But in practice
we send big chunks.
For instance, packing torvalds/linux on GitHub servers
now reused 6.5M objects, but only needed ~50k chunks.
Helped-by: Jonathan Tan <jonathantanmy@google.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Christian Couder <chriscool@tuxfamily.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2019-12-18 11:25:45 +00:00
|
|
|
while (i < result->word_alloc && result->words[i] == (eword_t)~0)
|
|
|
|
i++;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
2021-08-31 20:52:21 +00:00
|
|
|
/*
|
|
|
|
* Don't mark objects not in the packfile or preferred pack. This bitmap
|
|
|
|
* marks objects eligible for reuse, but the pack-reuse code only
|
|
|
|
* understands how to reuse a single pack. Since the preferred pack is
|
|
|
|
* guaranteed to have all bases for its deltas (in a multi-pack bitmap),
|
|
|
|
* we use it instead of another pack. In single-pack bitmaps, the choice
|
|
|
|
* is made for us.
|
|
|
|
*/
|
2021-08-31 20:52:12 +00:00
|
|
|
if (i > objects_nr / BITS_IN_EWORD)
|
|
|
|
i = objects_nr / BITS_IN_EWORD;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
pack-objects: improve partial packfile reuse
The old code to reuse deltas from an existing packfile
just tried to dump a whole segment of the pack verbatim.
That's faster than the traditional way of actually adding
objects to the packing list, but it didn't kick in very
often. This new code is really going for a middle ground:
do _some_ per-object work, but way less than we'd
traditionally do.
The general strategy of the new code is to make a bitmap
of objects from the packfile we'll include, and then
iterate over it, writing out each object exactly as it is
in our on-disk pack, but _not_ adding it to our packlist
(which costs memory, and increases the search space for
deltas).
One complication is that if we're omitting some objects,
we can't set a delta against a base that we're not
sending. So we have to check each object in
try_partial_reuse() to make sure we have its delta.
About performance, in the worst case we might have
interleaved objects that we are sending or not sending,
and we'd have as many chunks as objects. But in practice
we send big chunks.
For instance, packing torvalds/linux on GitHub servers
now reused 6.5M objects, but only needed ~50k chunks.
Helped-by: Jonathan Tan <jonathantanmy@google.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Christian Couder <chriscool@tuxfamily.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2019-12-18 11:25:45 +00:00
|
|
|
reuse = bitmap_word_alloc(i);
|
|
|
|
memset(reuse->words, 0xFF, i * sizeof(eword_t));
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
pack-objects: improve partial packfile reuse
The old code to reuse deltas from an existing packfile
just tried to dump a whole segment of the pack verbatim.
That's faster than the traditional way of actually adding
objects to the packing list, but it didn't kick in very
often. This new code is really going for a middle ground:
do _some_ per-object work, but way less than we'd
traditionally do.
The general strategy of the new code is to make a bitmap
of objects from the packfile we'll include, and then
iterate over it, writing out each object exactly as it is
in our on-disk pack, but _not_ adding it to our packlist
(which costs memory, and increases the search space for
deltas).
One complication is that if we're omitting some objects,
we can't set a delta against a base that we're not
sending. So we have to check each object in
try_partial_reuse() to make sure we have its delta.
About performance, in the worst case we might have
interleaved objects that we are sending or not sending,
and we'd have as many chunks as objects. But in practice
we send big chunks.
For instance, packing torvalds/linux on GitHub servers
now reused 6.5M objects, but only needed ~50k chunks.
Helped-by: Jonathan Tan <jonathantanmy@google.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Christian Couder <chriscool@tuxfamily.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2019-12-18 11:25:45 +00:00
|
|
|
for (; i < result->word_alloc; ++i) {
|
|
|
|
eword_t word = result->words[i];
|
|
|
|
size_t pos = (i * BITS_IN_EWORD);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
pack-objects: improve partial packfile reuse
The old code to reuse deltas from an existing packfile
just tried to dump a whole segment of the pack verbatim.
That's faster than the traditional way of actually adding
objects to the packing list, but it didn't kick in very
often. This new code is really going for a middle ground:
do _some_ per-object work, but way less than we'd
traditionally do.
The general strategy of the new code is to make a bitmap
of objects from the packfile we'll include, and then
iterate over it, writing out each object exactly as it is
in our on-disk pack, but _not_ adding it to our packlist
(which costs memory, and increases the search space for
deltas).
One complication is that if we're omitting some objects,
we can't set a delta against a base that we're not
sending. So we have to check each object in
try_partial_reuse() to make sure we have its delta.
About performance, in the worst case we might have
interleaved objects that we are sending or not sending,
and we'd have as many chunks as objects. But in practice
we send big chunks.
For instance, packing torvalds/linux on GitHub servers
now reused 6.5M objects, but only needed ~50k chunks.
Helped-by: Jonathan Tan <jonathantanmy@google.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Christian Couder <chriscool@tuxfamily.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2019-12-18 11:25:45 +00:00
|
|
|
for (offset = 0; offset < BITS_IN_EWORD; ++offset) {
|
|
|
|
if ((word >> offset) == 0)
|
|
|
|
break;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
pack-objects: improve partial packfile reuse
The old code to reuse deltas from an existing packfile
just tried to dump a whole segment of the pack verbatim.
That's faster than the traditional way of actually adding
objects to the packing list, but it didn't kick in very
often. This new code is really going for a middle ground:
do _some_ per-object work, but way less than we'd
traditionally do.
The general strategy of the new code is to make a bitmap
of objects from the packfile we'll include, and then
iterate over it, writing out each object exactly as it is
in our on-disk pack, but _not_ adding it to our packlist
(which costs memory, and increases the search space for
deltas).
One complication is that if we're omitting some objects,
we can't set a delta against a base that we're not
sending. So we have to check each object in
try_partial_reuse() to make sure we have its delta.
About performance, in the worst case we might have
interleaved objects that we are sending or not sending,
and we'd have as many chunks as objects. But in practice
we send big chunks.
For instance, packing torvalds/linux on GitHub servers
now reused 6.5M objects, but only needed ~50k chunks.
Helped-by: Jonathan Tan <jonathantanmy@google.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Christian Couder <chriscool@tuxfamily.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2019-12-18 11:25:45 +00:00
|
|
|
offset += ewah_bit_ctz64(word >> offset);
|
2021-09-09 19:57:21 +00:00
|
|
|
if (try_partial_reuse(pack, pos + offset,
|
2021-08-31 20:52:21 +00:00
|
|
|
reuse, &w_curs) < 0) {
|
2021-08-31 20:52:19 +00:00
|
|
|
/*
|
|
|
|
* try_partial_reuse indicated we couldn't reuse
|
|
|
|
* any bits, so there is no point in trying more
|
|
|
|
* bits in the current word, or any other words
|
|
|
|
* in result.
|
|
|
|
*
|
|
|
|
* Jump out of both loops to avoid future
|
|
|
|
* unnecessary calls to try_partial_reuse.
|
|
|
|
*/
|
|
|
|
goto done;
|
|
|
|
}
|
pack-objects: improve partial packfile reuse
The old code to reuse deltas from an existing packfile
just tried to dump a whole segment of the pack verbatim.
That's faster than the traditional way of actually adding
objects to the packing list, but it didn't kick in very
often. This new code is really going for a middle ground:
do _some_ per-object work, but way less than we'd
traditionally do.
The general strategy of the new code is to make a bitmap
of objects from the packfile we'll include, and then
iterate over it, writing out each object exactly as it is
in our on-disk pack, but _not_ adding it to our packlist
(which costs memory, and increases the search space for
deltas).
One complication is that if we're omitting some objects,
we can't set a delta against a base that we're not
sending. So we have to check each object in
try_partial_reuse() to make sure we have its delta.
About performance, in the worst case we might have
interleaved objects that we are sending or not sending,
and we'd have as many chunks as objects. But in practice
we send big chunks.
For instance, packing torvalds/linux on GitHub servers
now reused 6.5M objects, but only needed ~50k chunks.
Helped-by: Jonathan Tan <jonathantanmy@google.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Christian Couder <chriscool@tuxfamily.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2019-12-18 11:25:45 +00:00
|
|
|
}
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
}
|
|
|
|
|
2021-08-31 20:52:19 +00:00
|
|
|
done:
|
pack-objects: improve partial packfile reuse
The old code to reuse deltas from an existing packfile
just tried to dump a whole segment of the pack verbatim.
That's faster than the traditional way of actually adding
objects to the packing list, but it didn't kick in very
often. This new code is really going for a middle ground:
do _some_ per-object work, but way less than we'd
traditionally do.
The general strategy of the new code is to make a bitmap
of objects from the packfile we'll include, and then
iterate over it, writing out each object exactly as it is
in our on-disk pack, but _not_ adding it to our packlist
(which costs memory, and increases the search space for
deltas).
One complication is that if we're omitting some objects,
we can't set a delta against a base that we're not
sending. So we have to check each object in
try_partial_reuse() to make sure we have its delta.
About performance, in the worst case we might have
interleaved objects that we are sending or not sending,
and we'd have as many chunks as objects. But in practice
we send big chunks.
For instance, packing torvalds/linux on GitHub servers
now reused 6.5M objects, but only needed ~50k chunks.
Helped-by: Jonathan Tan <jonathantanmy@google.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Christian Couder <chriscool@tuxfamily.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2019-12-18 11:25:45 +00:00
|
|
|
unuse_pack(&w_curs);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
pack-objects: improve partial packfile reuse
The old code to reuse deltas from an existing packfile
just tried to dump a whole segment of the pack verbatim.
That's faster than the traditional way of actually adding
objects to the packing list, but it didn't kick in very
often. This new code is really going for a middle ground:
do _some_ per-object work, but way less than we'd
traditionally do.
The general strategy of the new code is to make a bitmap
of objects from the packfile we'll include, and then
iterate over it, writing out each object exactly as it is
in our on-disk pack, but _not_ adding it to our packlist
(which costs memory, and increases the search space for
deltas).
One complication is that if we're omitting some objects,
we can't set a delta against a base that we're not
sending. So we have to check each object in
try_partial_reuse() to make sure we have its delta.
About performance, in the worst case we might have
interleaved objects that we are sending or not sending,
and we'd have as many chunks as objects. But in practice
we send big chunks.
For instance, packing torvalds/linux on GitHub servers
now reused 6.5M objects, but only needed ~50k chunks.
Helped-by: Jonathan Tan <jonathantanmy@google.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Christian Couder <chriscool@tuxfamily.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2019-12-18 11:25:45 +00:00
|
|
|
*entries = bitmap_popcount(reuse);
|
|
|
|
if (!*entries) {
|
|
|
|
bitmap_free(reuse);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
pack-objects: improve partial packfile reuse
The old code to reuse deltas from an existing packfile
just tried to dump a whole segment of the pack verbatim.
That's faster than the traditional way of actually adding
objects to the packing list, but it didn't kick in very
often. This new code is really going for a middle ground:
do _some_ per-object work, but way less than we'd
traditionally do.
The general strategy of the new code is to make a bitmap
of objects from the packfile we'll include, and then
iterate over it, writing out each object exactly as it is
in our on-disk pack, but _not_ adding it to our packlist
(which costs memory, and increases the search space for
deltas).
One complication is that if we're omitting some objects,
we can't set a delta against a base that we're not
sending. So we have to check each object in
try_partial_reuse() to make sure we have its delta.
About performance, in the worst case we might have
interleaved objects that we are sending or not sending,
and we'd have as many chunks as objects. But in practice
we send big chunks.
For instance, packing torvalds/linux on GitHub servers
now reused 6.5M objects, but only needed ~50k chunks.
Helped-by: Jonathan Tan <jonathantanmy@google.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Christian Couder <chriscool@tuxfamily.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2019-12-18 11:25:45 +00:00
|
|
|
/*
|
|
|
|
* Drop any reused objects from the result, since they will not
|
|
|
|
* need to be handled separately.
|
|
|
|
*/
|
|
|
|
bitmap_and_not(result, reuse);
|
2021-08-31 20:52:21 +00:00
|
|
|
*packfile_out = pack;
|
pack-objects: improve partial packfile reuse
The old code to reuse deltas from an existing packfile
just tried to dump a whole segment of the pack verbatim.
That's faster than the traditional way of actually adding
objects to the packing list, but it didn't kick in very
often. This new code is really going for a middle ground:
do _some_ per-object work, but way less than we'd
traditionally do.
The general strategy of the new code is to make a bitmap
of objects from the packfile we'll include, and then
iterate over it, writing out each object exactly as it is
in our on-disk pack, but _not_ adding it to our packlist
(which costs memory, and increases the search space for
deltas).
One complication is that if we're omitting some objects,
we can't set a delta against a base that we're not
sending. So we have to check each object in
try_partial_reuse() to make sure we have its delta.
About performance, in the worst case we might have
interleaved objects that we are sending or not sending,
and we'd have as many chunks as objects. But in practice
we send big chunks.
For instance, packing torvalds/linux on GitHub servers
now reused 6.5M objects, but only needed ~50k chunks.
Helped-by: Jonathan Tan <jonathantanmy@google.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Christian Couder <chriscool@tuxfamily.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2019-12-18 11:25:45 +00:00
|
|
|
*reuse_out = reuse;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2019-12-18 11:25:39 +00:00
|
|
|
int bitmap_walk_contains(struct bitmap_index *bitmap_git,
|
|
|
|
struct bitmap *bitmap, const struct object_id *oid)
|
|
|
|
{
|
|
|
|
int idx;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
2019-12-18 11:25:39 +00:00
|
|
|
if (!bitmap)
|
|
|
|
return 0;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
2019-12-18 11:25:39 +00:00
|
|
|
idx = bitmap_position(bitmap_git, oid);
|
|
|
|
return idx >= 0 && bitmap_get(bitmap, idx);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
}
|
|
|
|
|
2018-06-07 19:04:13 +00:00
|
|
|
void traverse_bitmap_commit_list(struct bitmap_index *bitmap_git,
|
rev-list: allow commit-only bitmap traversals
Ever since we added reachability bitmap support, we've been able to use
it with rev-list to get the full list of objects, like:
git rev-list --objects --use-bitmap-index --all
But you can't do so without --objects, since we weren't ready to just
show the commits. However, the internals of the bitmap code are mostly
ready for this: they avoid opening up trees when walking to fill in the
bitmaps. We just need to actually pass in the rev_info to
traverse_bitmap_commit_list() so it knows which types to bother
triggering our callback for.
For completeness, the perf test now covers both the existing --objects
case, as well as the new commits-only behavior (the objects one got way
faster when we introduced bitmaps, but obviously isn't improved now).
Here are numbers for linux.git:
Test HEAD^ HEAD
------------------------------------------------------------------------
5310.7: rev-list (commits) 8.29(8.10+0.19) 1.76(1.72+0.04) -78.8%
5310.8: rev-list (objects) 8.06(7.94+0.12) 8.14(7.94+0.13) +1.0%
That run was cheating a little, as I didn't have any commit-graph in the
repository, and we'd built it by default these days when running git-gc.
Here are numbers with a commit-graph:
Test HEAD^ HEAD
------------------------------------------------------------------------
5310.7: rev-list (commits) 0.70(0.58+0.12) 0.51(0.46+0.04) -27.1%
5310.8: rev-list (objects) 6.20(6.09+0.10) 6.27(6.16+0.11) +1.1%
Still an improvement, but a lot less impressive.
We could have the perf script remove any commit-graph to show the
out-sized effect, but it probably makes sense to leave it in what would
be a more typical setup.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-02-14 18:22:27 +00:00
|
|
|
struct rev_info *revs,
|
2018-06-07 19:04:13 +00:00
|
|
|
show_reachable_fn show_reachable)
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
{
|
2018-06-07 19:04:13 +00:00
|
|
|
assert(bitmap_git->result);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
2020-02-13 02:16:15 +00:00
|
|
|
show_objects_for_type(bitmap_git, OBJ_COMMIT, show_reachable);
|
rev-list: allow commit-only bitmap traversals
Ever since we added reachability bitmap support, we've been able to use
it with rev-list to get the full list of objects, like:
git rev-list --objects --use-bitmap-index --all
But you can't do so without --objects, since we weren't ready to just
show the commits. However, the internals of the bitmap code are mostly
ready for this: they avoid opening up trees when walking to fill in the
bitmaps. We just need to actually pass in the rev_info to
traverse_bitmap_commit_list() so it knows which types to bother
triggering our callback for.
For completeness, the perf test now covers both the existing --objects
case, as well as the new commits-only behavior (the objects one got way
faster when we introduced bitmaps, but obviously isn't improved now).
Here are numbers for linux.git:
Test HEAD^ HEAD
------------------------------------------------------------------------
5310.7: rev-list (commits) 8.29(8.10+0.19) 1.76(1.72+0.04) -78.8%
5310.8: rev-list (objects) 8.06(7.94+0.12) 8.14(7.94+0.13) +1.0%
That run was cheating a little, as I didn't have any commit-graph in the
repository, and we'd built it by default these days when running git-gc.
Here are numbers with a commit-graph:
Test HEAD^ HEAD
------------------------------------------------------------------------
5310.7: rev-list (commits) 0.70(0.58+0.12) 0.51(0.46+0.04) -27.1%
5310.8: rev-list (objects) 6.20(6.09+0.10) 6.27(6.16+0.11) +1.1%
Still an improvement, but a lot less impressive.
We could have the perf script remove any commit-graph to show the
out-sized effect, but it probably makes sense to leave it in what would
be a more typical setup.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-02-14 18:22:27 +00:00
|
|
|
if (revs->tree_objects)
|
|
|
|
show_objects_for_type(bitmap_git, OBJ_TREE, show_reachable);
|
|
|
|
if (revs->blob_objects)
|
|
|
|
show_objects_for_type(bitmap_git, OBJ_BLOB, show_reachable);
|
|
|
|
if (revs->tag_objects)
|
|
|
|
show_objects_for_type(bitmap_git, OBJ_TAG, show_reachable);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
rev-list: allow commit-only bitmap traversals
Ever since we added reachability bitmap support, we've been able to use
it with rev-list to get the full list of objects, like:
git rev-list --objects --use-bitmap-index --all
But you can't do so without --objects, since we weren't ready to just
show the commits. However, the internals of the bitmap code are mostly
ready for this: they avoid opening up trees when walking to fill in the
bitmaps. We just need to actually pass in the rev_info to
traverse_bitmap_commit_list() so it knows which types to bother
triggering our callback for.
For completeness, the perf test now covers both the existing --objects
case, as well as the new commits-only behavior (the objects one got way
faster when we introduced bitmaps, but obviously isn't improved now).
Here are numbers for linux.git:
Test HEAD^ HEAD
------------------------------------------------------------------------
5310.7: rev-list (commits) 8.29(8.10+0.19) 1.76(1.72+0.04) -78.8%
5310.8: rev-list (objects) 8.06(7.94+0.12) 8.14(7.94+0.13) +1.0%
That run was cheating a little, as I didn't have any commit-graph in the
repository, and we'd built it by default these days when running git-gc.
Here are numbers with a commit-graph:
Test HEAD^ HEAD
------------------------------------------------------------------------
5310.7: rev-list (commits) 0.70(0.58+0.12) 0.51(0.46+0.04) -27.1%
5310.8: rev-list (objects) 6.20(6.09+0.10) 6.27(6.16+0.11) +1.1%
Still an improvement, but a lot less impressive.
We could have the perf script remove any commit-graph to show the
out-sized effect, but it probably makes sense to leave it in what would
be a more typical setup.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-02-14 18:22:27 +00:00
|
|
|
show_extended_objects(bitmap_git, revs, show_reachable);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
}
|
|
|
|
|
2018-06-07 19:04:13 +00:00
|
|
|
static uint32_t count_object_type(struct bitmap_index *bitmap_git,
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
enum object_type type)
|
|
|
|
{
|
2018-06-07 19:04:13 +00:00
|
|
|
struct bitmap *objects = bitmap_git->result;
|
|
|
|
struct eindex *eindex = &bitmap_git->ext_index;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
|
|
|
uint32_t i = 0, count = 0;
|
|
|
|
struct ewah_iterator it;
|
|
|
|
eword_t filter;
|
|
|
|
|
2020-02-13 02:16:15 +00:00
|
|
|
init_type_iterator(&it, bitmap_git, type);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
|
|
|
while (i < objects->word_alloc && ewah_iterator_next(&filter, &it)) {
|
|
|
|
eword_t word = objects->words[i++] & filter;
|
|
|
|
count += ewah_bit_popcount64(word);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < eindex->count; ++i) {
|
|
|
|
if (eindex->objects[i]->type == type &&
|
2021-08-31 20:52:12 +00:00
|
|
|
bitmap_get(objects, bitmap_num_objects(bitmap_git) + i))
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
count++;
|
|
|
|
}
|
|
|
|
|
|
|
|
return count;
|
|
|
|
}
|
|
|
|
|
2018-06-07 19:04:13 +00:00
|
|
|
void count_bitmap_commit_list(struct bitmap_index *bitmap_git,
|
|
|
|
uint32_t *commits, uint32_t *trees,
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
uint32_t *blobs, uint32_t *tags)
|
|
|
|
{
|
2018-06-07 19:04:13 +00:00
|
|
|
assert(bitmap_git->result);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
|
|
|
if (commits)
|
2018-06-07 19:04:13 +00:00
|
|
|
*commits = count_object_type(bitmap_git, OBJ_COMMIT);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
|
|
|
if (trees)
|
2018-06-07 19:04:13 +00:00
|
|
|
*trees = count_object_type(bitmap_git, OBJ_TREE);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
|
|
|
if (blobs)
|
2018-06-07 19:04:13 +00:00
|
|
|
*blobs = count_object_type(bitmap_git, OBJ_BLOB);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
|
|
|
if (tags)
|
2018-06-07 19:04:13 +00:00
|
|
|
*tags = count_object_type(bitmap_git, OBJ_TAG);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
struct bitmap_test_data {
|
2018-06-07 19:04:13 +00:00
|
|
|
struct bitmap_index *bitmap_git;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
struct bitmap *base;
|
2021-08-24 16:15:51 +00:00
|
|
|
struct bitmap *commits;
|
|
|
|
struct bitmap *trees;
|
|
|
|
struct bitmap *blobs;
|
|
|
|
struct bitmap *tags;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
struct progress *prg;
|
|
|
|
size_t seen;
|
|
|
|
};
|
|
|
|
|
2021-08-24 16:15:51 +00:00
|
|
|
static void test_bitmap_type(struct bitmap_test_data *tdata,
|
|
|
|
struct object *obj, int pos)
|
|
|
|
{
|
|
|
|
enum object_type bitmap_type = OBJ_NONE;
|
|
|
|
int bitmaps_nr = 0;
|
|
|
|
|
|
|
|
if (bitmap_get(tdata->commits, pos)) {
|
|
|
|
bitmap_type = OBJ_COMMIT;
|
|
|
|
bitmaps_nr++;
|
|
|
|
}
|
|
|
|
if (bitmap_get(tdata->trees, pos)) {
|
|
|
|
bitmap_type = OBJ_TREE;
|
|
|
|
bitmaps_nr++;
|
|
|
|
}
|
|
|
|
if (bitmap_get(tdata->blobs, pos)) {
|
|
|
|
bitmap_type = OBJ_BLOB;
|
|
|
|
bitmaps_nr++;
|
|
|
|
}
|
|
|
|
if (bitmap_get(tdata->tags, pos)) {
|
|
|
|
bitmap_type = OBJ_TAG;
|
|
|
|
bitmaps_nr++;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (bitmap_type == OBJ_NONE)
|
|
|
|
die("object %s not found in type bitmaps",
|
|
|
|
oid_to_hex(&obj->oid));
|
|
|
|
|
|
|
|
if (bitmaps_nr > 1)
|
|
|
|
die("object %s does not have a unique type",
|
|
|
|
oid_to_hex(&obj->oid));
|
|
|
|
|
|
|
|
if (bitmap_type != obj->type)
|
|
|
|
die("object %s: real type %s, expected: %s",
|
|
|
|
oid_to_hex(&obj->oid),
|
|
|
|
type_name(obj->type),
|
|
|
|
type_name(bitmap_type));
|
|
|
|
}
|
|
|
|
|
list-objects: pass full pathname to callbacks
When we find a blob at "a/b/c", we currently pass this to
our show_object_fn callbacks as two components: "a/b/" and
"c". Callbacks which want the full value then call
path_name(), which concatenates the two. But this is an
inefficient interface; the path is a strbuf, and we could
simply append "c" to it temporarily, then roll back the
length, without creating a new copy.
So we could improve this by teaching the callsites of
path_name() this trick (and there are only 3). But we can
also notice that no callback actually cares about the
broken-down representation, and simply pass each callback
the full path "a/b/c" as a string. The callback code becomes
even simpler, then, as we do not have to worry about freeing
an allocated buffer, nor rolling back our modification to
the strbuf.
This is theoretically less efficient, as some callbacks
would not bother to format the final path component. But in
practice this is not measurable. Since we use the same
strbuf over and over, our work to grow it is amortized, and
we really only pay to memcpy a few bytes.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-02-11 22:28:36 +00:00
|
|
|
static void test_show_object(struct object *object, const char *name,
|
|
|
|
void *data)
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
{
|
|
|
|
struct bitmap_test_data *tdata = data;
|
|
|
|
int bitmap_pos;
|
|
|
|
|
2019-02-19 00:04:58 +00:00
|
|
|
bitmap_pos = bitmap_position(tdata->bitmap_git, &object->oid);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
if (bitmap_pos < 0)
|
2015-11-10 02:22:28 +00:00
|
|
|
die("Object not in bitmap: %s\n", oid_to_hex(&object->oid));
|
2021-08-24 16:15:51 +00:00
|
|
|
test_bitmap_type(tdata, object, bitmap_pos);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
|
|
|
bitmap_set(tdata->base, bitmap_pos);
|
|
|
|
display_progress(tdata->prg, ++tdata->seen);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_show_commit(struct commit *commit, void *data)
|
|
|
|
{
|
|
|
|
struct bitmap_test_data *tdata = data;
|
|
|
|
int bitmap_pos;
|
|
|
|
|
2018-06-07 19:04:13 +00:00
|
|
|
bitmap_pos = bitmap_position(tdata->bitmap_git,
|
2019-02-19 00:04:58 +00:00
|
|
|
&commit->object.oid);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
if (bitmap_pos < 0)
|
2015-11-10 02:22:28 +00:00
|
|
|
die("Object not in bitmap: %s\n", oid_to_hex(&commit->object.oid));
|
2021-08-24 16:15:51 +00:00
|
|
|
test_bitmap_type(tdata, &commit->object, bitmap_pos);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
|
|
|
bitmap_set(tdata->base, bitmap_pos);
|
|
|
|
display_progress(tdata->prg, ++tdata->seen);
|
|
|
|
}
|
|
|
|
|
|
|
|
void test_bitmap_walk(struct rev_info *revs)
|
|
|
|
{
|
|
|
|
struct object *root;
|
|
|
|
struct bitmap *result = NULL;
|
|
|
|
size_t result_popcnt;
|
|
|
|
struct bitmap_test_data tdata;
|
2018-06-07 19:04:13 +00:00
|
|
|
struct bitmap_index *bitmap_git;
|
2020-12-08 22:05:09 +00:00
|
|
|
struct ewah_bitmap *bm;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
2018-11-10 05:49:08 +00:00
|
|
|
if (!(bitmap_git = prepare_bitmap_git(revs->repo)))
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
die("failed to load bitmap indexes");
|
|
|
|
|
|
|
|
if (revs->pending.nr != 1)
|
|
|
|
die("you must specify exactly one commit to test");
|
|
|
|
|
|
|
|
fprintf(stderr, "Bitmap v%d test (%d entries loaded)\n",
|
2018-06-07 19:04:13 +00:00
|
|
|
bitmap_git->version, bitmap_git->entry_count);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
|
|
|
root = revs->pending.objects[0].item;
|
2020-12-08 22:05:09 +00:00
|
|
|
bm = bitmap_for_commit(bitmap_git, (struct commit *)root);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
2020-12-08 22:05:09 +00:00
|
|
|
if (bm) {
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
fprintf(stderr, "Found bitmap for %s. %d bits / %08x checksum\n",
|
2015-11-10 02:22:28 +00:00
|
|
|
oid_to_hex(&root->oid), (int)bm->bit_size, ewah_checksum(bm));
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
|
|
|
result = ewah_to_bitmap(bm);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (result == NULL)
|
2015-11-10 02:22:28 +00:00
|
|
|
die("Commit %s doesn't have an indexed bitmap", oid_to_hex(&root->oid));
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
|
|
|
|
revs->tag_objects = 1;
|
|
|
|
revs->tree_objects = 1;
|
|
|
|
revs->blob_objects = 1;
|
|
|
|
|
|
|
|
result_popcnt = bitmap_popcount(result);
|
|
|
|
|
|
|
|
if (prepare_revision_walk(revs))
|
|
|
|
die("revision walk setup failed");
|
|
|
|
|
2018-06-07 19:04:13 +00:00
|
|
|
tdata.bitmap_git = bitmap_git;
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
tdata.base = bitmap_new();
|
2021-08-24 16:15:51 +00:00
|
|
|
tdata.commits = ewah_to_bitmap(bitmap_git->commits);
|
|
|
|
tdata.trees = ewah_to_bitmap(bitmap_git->trees);
|
|
|
|
tdata.blobs = ewah_to_bitmap(bitmap_git->blobs);
|
|
|
|
tdata.tags = ewah_to_bitmap(bitmap_git->tags);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
tdata.prg = start_progress("Verifying bitmap entries", result_popcnt);
|
|
|
|
tdata.seen = 0;
|
|
|
|
|
|
|
|
traverse_commit_list(revs, &test_show_commit, &test_show_object, &tdata);
|
|
|
|
|
|
|
|
stop_progress(&tdata.prg);
|
|
|
|
|
|
|
|
if (bitmap_equals(result, tdata.base))
|
|
|
|
fprintf(stderr, "OK!\n");
|
|
|
|
else
|
2020-12-08 22:03:33 +00:00
|
|
|
die("mismatch in bitmap results");
|
2015-03-31 01:22:10 +00:00
|
|
|
|
2018-06-07 19:04:14 +00:00
|
|
|
free_bitmap_index(bitmap_git);
|
pack-bitmap: add support for bitmap indexes
A bitmap index is a `.bitmap` file that can be found inside
`$GIT_DIR/objects/pack/`, next to its corresponding packfile, and
contains precalculated reachability information for selected commits.
The full specification of the format for these bitmap indexes can be found
in `Documentation/technical/bitmap-format.txt`.
For a given commit SHA1, if it happens to be available in the bitmap
index, its bitmap will represent every single object that is reachable
from the commit itself. The nth bit in the bitmap is the nth object in
the packfile; if it's set to 1, the object is reachable.
By using the bitmaps available in the index, this commit implements
several new functions:
- `prepare_bitmap_git`
- `prepare_bitmap_walk`
- `traverse_bitmap_commit_list`
- `reuse_partial_packfile_from_bitmap`
The `prepare_bitmap_walk` function tries to build a bitmap of all the
objects that can be reached from the commit roots of a given `rev_info`
struct by using the following algorithm:
- If all the interesting commits for a revision walk are available in
the index, the resulting reachability bitmap is the bitwise OR of all
the individual bitmaps.
- When the full set of WANTs is not available in the index, we perform a
partial revision walk using the commits that don't have bitmaps as
roots, and limiting the revision walk as soon as we reach a commit that
has a corresponding bitmap. The earlier OR'ed bitmap with all the
indexed commits can now be completed as this walk progresses, so the end
result is the full reachability list.
- For revision walks with a HAVEs set (a set of commits that are deemed
uninteresting), first we perform the same method as for the WANTs, but
using our HAVEs as roots, in order to obtain a full reachability bitmap
of all the uninteresting commits. This bitmap then can be used to:
a) limit the subsequent walk when building the WANTs bitmap
b) finding the final set of interesting commits by performing an
AND-NOT of the WANTs and the HAVEs.
If `prepare_bitmap_walk` runs successfully, the resulting bitmap is
stored and the equivalent of a `traverse_commit_list` call can be
performed by using `traverse_bitmap_commit_list`; the bitmap version
of this call yields the objects straight from the packfile index
(without having to look them up or parse them) and hence is several
orders of magnitude faster.
As an extra optimization, when `prepare_bitmap_walk` succeeds, the
`reuse_partial_packfile_from_bitmap` call can be attempted: it will find
the amount of objects at the beginning of the on-disk packfile that can
be reused as-is, and return an offset into the packfile. The source
packfile can then be loaded and the bytes up to `offset` can be written
directly to the result without having to consider the entires inside the
packfile individually.
If the `prepare_bitmap_walk` call fails (e.g. because no bitmap files
are available), the `rev_info` struct is left untouched, and can be used
to perform a manual rev-walk using `traverse_commit_list`.
Hence, this new set of functions are a generic API that allows to
perform the equivalent of
git rev-list --objects [roots...] [^uninteresting...]
for any set of commits, even if they don't have specific bitmaps
generated for them.
In further patches, we'll use this bitmap traversal optimization to
speed up the `pack-objects` and `rev-list` commands.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:01 +00:00
|
|
|
}
|
pack-objects: implement bitmap writing
This commit extends more the functionality of `pack-objects` by allowing
it to write out a `.bitmap` index next to any written packs, together
with the `.idx` index that currently gets written.
If bitmap writing is enabled for a given repository (either by calling
`pack-objects` with the `--write-bitmap-index` flag or by having
`pack.writebitmaps` set to `true` in the config) and pack-objects is
writing a packfile that would normally be indexed (i.e. not piping to
stdout), we will attempt to write the corresponding bitmap index for the
packfile.
Bitmap index writing happens after the packfile and its index has been
successfully written to disk (`finish_tmp_packfile`). The process is
performed in several steps:
1. `bitmap_writer_set_checksum`: this call stores the partial
checksum for the packfile being written; the checksum will be
written in the resulting bitmap index to verify its integrity
2. `bitmap_writer_build_type_index`: this call uses the array of
`struct object_entry` that has just been sorted when writing out
the actual packfile index to disk to generate 4 type-index bitmaps
(one for each object type).
These bitmaps have their nth bit set if the given object is of
the bitmap's type. E.g. the nth bit of the Commits bitmap will be
1 if the nth object in the packfile index is a commit.
This is a very cheap operation because the bitmap writing code has
access to the metadata stored in the `struct object_entry` array,
and hence the real type for each object in the packfile.
3. `bitmap_writer_reuse_bitmaps`: if there exists an existing bitmap
index for one of the packfiles we're trying to repack, this call
will efficiently rebuild the existing bitmaps so they can be
reused on the new index. All the existing bitmaps will be stored
in a `reuse` hash table, and the commit selection phase will
prioritize these when selecting, as they can be written directly
to the new index without having to perform a revision walk to
fill the bitmap. This can greatly speed up the repack of a
repository that already has bitmaps.
4. `bitmap_writer_select_commits`: if bitmap writing is enabled for
a given `pack-objects` run, the sequence of commits generated
during the Counting Objects phase will be stored in an array.
We then use that array to build up the list of selected commits.
Writing a bitmap in the index for each object in the repository
would be cost-prohibitive, so we use a simple heuristic to pick
the commits that will be indexed with bitmaps.
The current heuristics are a simplified version of JGit's
original implementation. We select a higher density of commits
depending on their age: the 100 most recent commits are always
selected, after that we pick 1 commit of each 100, and the gap
increases as the commits grow older. On top of that, we make sure
that every single branch that has not been merged (all the tips
that would be required from a clone) gets their own bitmap, and
when selecting commits between a gap, we tend to prioritize the
commit with the most parents.
Do note that there is no right/wrong way to perform commit
selection; different selection algorithms will result in
different commits being selected, but there's no such thing as
"missing a commit". The bitmap walker algorithm implemented in
`prepare_bitmap_walk` is able to adapt to missing bitmaps by
performing manual walks that complete the bitmap: the ideal
selection algorithm, however, would select the commits that are
more likely to be used as roots for a walk in the future (e.g.
the tips of each branch, and so on) to ensure a bitmap for them
is always available.
5. `bitmap_writer_build`: this is the computationally expensive part
of bitmap generation. Based on the list of commits that were
selected in the previous step, we perform several incremental
walks to generate the bitmap for each commit.
The walks begin from the oldest commit, and are built up
incrementally for each branch. E.g. consider this dag where A, B,
C, D, E, F are the selected commits, and a, b, c, e are a chunk
of simplified history that will not receive bitmaps.
A---a---B--b--C--c--D
\
E--e--F
We start by building the bitmap for A, using A as the root for a
revision walk and marking all the objects that are reachable
until the walk is over. Once this bitmap is stored, we reuse the
bitmap walker to perform the walk for B, assuming that once we
reach A again, the walk will be terminated because A has already
been SEEN on the previous walk.
This process is repeated for C, and D, but when we try to
generate the bitmaps for E, we can reuse neither the current walk
nor the bitmap we have generated so far.
What we do now is resetting both the walk and clearing the
bitmap, and performing the walk from scratch using E as the
origin. This new walk, however, does not need to be completed.
Once we hit B, we can lookup the bitmap we have already stored
for that commit and OR it with the existing bitmap we've composed
so far, allowing us to limit the walk early.
After all the bitmaps have been generated, another iteration
through the list of commits is performed to find the best XOR
offsets for compression before writing them to disk. Because of
the incremental nature of these bitmaps, XORing one of them with
its predecesor results in a minimal "bitmap delta" most of the
time. We can write this delta to the on-disk bitmap index, and
then re-compose the original bitmaps by XORing them again when
loaded.
This is a phase very similar to pack-object's `find_delta` (using
bitmaps instead of objects, of course), except the heuristics
have been greatly simplified: we only check the 10 bitmaps before
any given one to find best compressing one. This gives good
results in practice, because there is locality in the ordering of
the objects (and therefore bitmaps) in the packfile.
6. `bitmap_writer_finish`: the last step in the process is
serializing to disk all the bitmap data that has been generated
in the two previous steps.
The bitmap is written to a tmp file and then moved atomically to
its final destination, using the same process as
`pack-write.c:write_idx_file`.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:16 +00:00
|
|
|
|
2021-04-01 01:32:07 +00:00
|
|
|
int test_bitmap_commits(struct repository *r)
|
|
|
|
{
|
|
|
|
struct bitmap_index *bitmap_git = prepare_bitmap_git(r);
|
|
|
|
struct object_id oid;
|
|
|
|
MAYBE_UNUSED void *value;
|
|
|
|
|
|
|
|
if (!bitmap_git)
|
|
|
|
die("failed to load bitmap indexes");
|
|
|
|
|
|
|
|
kh_foreach(bitmap_git->bitmaps, oid, value, {
|
|
|
|
printf("%s\n", oid_to_hex(&oid));
|
|
|
|
});
|
|
|
|
|
|
|
|
free_bitmap_index(bitmap_git);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2021-09-14 22:06:02 +00:00
|
|
|
int test_bitmap_hashes(struct repository *r)
|
|
|
|
{
|
|
|
|
struct bitmap_index *bitmap_git = prepare_bitmap_git(r);
|
|
|
|
struct object_id oid;
|
|
|
|
uint32_t i, index_pos;
|
|
|
|
|
|
|
|
if (!bitmap_git->hashes)
|
|
|
|
goto cleanup;
|
|
|
|
|
|
|
|
for (i = 0; i < bitmap_num_objects(bitmap_git); i++) {
|
|
|
|
if (bitmap_is_midx(bitmap_git))
|
|
|
|
index_pos = pack_pos_to_midx(bitmap_git->midx, i);
|
|
|
|
else
|
|
|
|
index_pos = pack_pos_to_index(bitmap_git->pack, i);
|
|
|
|
|
|
|
|
nth_bitmap_object_oid(bitmap_git, &oid, index_pos);
|
|
|
|
|
|
|
|
printf("%s %"PRIu32"\n",
|
|
|
|
oid_to_hex(&oid), get_be32(bitmap_git->hashes + index_pos));
|
|
|
|
}
|
|
|
|
|
|
|
|
cleanup:
|
|
|
|
free_bitmap_index(bitmap_git);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
pack-bitmap-write: ignore BITMAP_FLAG_REUSE
The on-disk bitmap format has a flag to mark a bitmap to be "reused".
This is a rather curious feature, and works like this:
- a run of pack-objects would decide to mark the last 80% of the
bitmaps it generates with the reuse flag
- the next time we generate bitmaps, we'd see those reuse flags from
the last run, and mark those commits as special:
- we'd be more likely to select those commits to get bitmaps in
the new output
- when generating the bitmap for a selected commit, we'd reuse the
old bitmap as-is (rearranging the bits to match the new pack, of
course)
However, neither of these behaviors particularly makes sense.
Just because a commit happened to be bitmapped last time does not make
it a good candidate for having a bitmap this time. In particular, we may
choose bitmaps based on how recent they are in history, or whether a ref
tip points to them, and those things will change. We're better off
re-considering fresh which commits are good candidates.
Reusing the existing bitmap _is_ a reasonable thing to do to save
computation. But only reusing exact bitmaps is a weak form of this. If
we have an old bitmap for A and now want a new bitmap for its child, we
should be able to compute that only by looking at trees and that are new
to the child. But this code would consider only exact reuse (which is
perhaps why it was eager to select those commits in the first place).
Furthermore, the recent switch to the reverse-edge algorithm for
generating bitmaps dropped this optimization entirely (and yet still
performs better).
So let's do a few cleanups:
- drop the whole "reusing bitmaps" phase of generating bitmaps. It's
not helping anything, and is mostly unused code (or worse, code that
is using CPU but not doing anything useful)
- drop the use of the on-disk reuse flag to select commits to bitmap
- stop setting the on-disk reuse flag in bitmaps we generate (since
nothing respects it anymore)
We will keep a few innards of the reuse code, which will help us
implement a more capable version of the "reuse" optimization:
- simplify rebuild_existing_bitmaps() into a function that only builds
the mapping of bits between the old and new orders, but doesn't
actually convert any bitmaps
- make rebuild_bitmap() public; we'll call it lazily to convert bitmaps
as we traverse (using the mapping created above)
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-12-08 22:04:34 +00:00
|
|
|
int rebuild_bitmap(const uint32_t *reposition,
|
|
|
|
struct ewah_bitmap *source,
|
|
|
|
struct bitmap *dest)
|
pack-objects: implement bitmap writing
This commit extends more the functionality of `pack-objects` by allowing
it to write out a `.bitmap` index next to any written packs, together
with the `.idx` index that currently gets written.
If bitmap writing is enabled for a given repository (either by calling
`pack-objects` with the `--write-bitmap-index` flag or by having
`pack.writebitmaps` set to `true` in the config) and pack-objects is
writing a packfile that would normally be indexed (i.e. not piping to
stdout), we will attempt to write the corresponding bitmap index for the
packfile.
Bitmap index writing happens after the packfile and its index has been
successfully written to disk (`finish_tmp_packfile`). The process is
performed in several steps:
1. `bitmap_writer_set_checksum`: this call stores the partial
checksum for the packfile being written; the checksum will be
written in the resulting bitmap index to verify its integrity
2. `bitmap_writer_build_type_index`: this call uses the array of
`struct object_entry` that has just been sorted when writing out
the actual packfile index to disk to generate 4 type-index bitmaps
(one for each object type).
These bitmaps have their nth bit set if the given object is of
the bitmap's type. E.g. the nth bit of the Commits bitmap will be
1 if the nth object in the packfile index is a commit.
This is a very cheap operation because the bitmap writing code has
access to the metadata stored in the `struct object_entry` array,
and hence the real type for each object in the packfile.
3. `bitmap_writer_reuse_bitmaps`: if there exists an existing bitmap
index for one of the packfiles we're trying to repack, this call
will efficiently rebuild the existing bitmaps so they can be
reused on the new index. All the existing bitmaps will be stored
in a `reuse` hash table, and the commit selection phase will
prioritize these when selecting, as they can be written directly
to the new index without having to perform a revision walk to
fill the bitmap. This can greatly speed up the repack of a
repository that already has bitmaps.
4. `bitmap_writer_select_commits`: if bitmap writing is enabled for
a given `pack-objects` run, the sequence of commits generated
during the Counting Objects phase will be stored in an array.
We then use that array to build up the list of selected commits.
Writing a bitmap in the index for each object in the repository
would be cost-prohibitive, so we use a simple heuristic to pick
the commits that will be indexed with bitmaps.
The current heuristics are a simplified version of JGit's
original implementation. We select a higher density of commits
depending on their age: the 100 most recent commits are always
selected, after that we pick 1 commit of each 100, and the gap
increases as the commits grow older. On top of that, we make sure
that every single branch that has not been merged (all the tips
that would be required from a clone) gets their own bitmap, and
when selecting commits between a gap, we tend to prioritize the
commit with the most parents.
Do note that there is no right/wrong way to perform commit
selection; different selection algorithms will result in
different commits being selected, but there's no such thing as
"missing a commit". The bitmap walker algorithm implemented in
`prepare_bitmap_walk` is able to adapt to missing bitmaps by
performing manual walks that complete the bitmap: the ideal
selection algorithm, however, would select the commits that are
more likely to be used as roots for a walk in the future (e.g.
the tips of each branch, and so on) to ensure a bitmap for them
is always available.
5. `bitmap_writer_build`: this is the computationally expensive part
of bitmap generation. Based on the list of commits that were
selected in the previous step, we perform several incremental
walks to generate the bitmap for each commit.
The walks begin from the oldest commit, and are built up
incrementally for each branch. E.g. consider this dag where A, B,
C, D, E, F are the selected commits, and a, b, c, e are a chunk
of simplified history that will not receive bitmaps.
A---a---B--b--C--c--D
\
E--e--F
We start by building the bitmap for A, using A as the root for a
revision walk and marking all the objects that are reachable
until the walk is over. Once this bitmap is stored, we reuse the
bitmap walker to perform the walk for B, assuming that once we
reach A again, the walk will be terminated because A has already
been SEEN on the previous walk.
This process is repeated for C, and D, but when we try to
generate the bitmaps for E, we can reuse neither the current walk
nor the bitmap we have generated so far.
What we do now is resetting both the walk and clearing the
bitmap, and performing the walk from scratch using E as the
origin. This new walk, however, does not need to be completed.
Once we hit B, we can lookup the bitmap we have already stored
for that commit and OR it with the existing bitmap we've composed
so far, allowing us to limit the walk early.
After all the bitmaps have been generated, another iteration
through the list of commits is performed to find the best XOR
offsets for compression before writing them to disk. Because of
the incremental nature of these bitmaps, XORing one of them with
its predecesor results in a minimal "bitmap delta" most of the
time. We can write this delta to the on-disk bitmap index, and
then re-compose the original bitmaps by XORing them again when
loaded.
This is a phase very similar to pack-object's `find_delta` (using
bitmaps instead of objects, of course), except the heuristics
have been greatly simplified: we only check the 10 bitmaps before
any given one to find best compressing one. This gives good
results in practice, because there is locality in the ordering of
the objects (and therefore bitmaps) in the packfile.
6. `bitmap_writer_finish`: the last step in the process is
serializing to disk all the bitmap data that has been generated
in the two previous steps.
The bitmap is written to a tmp file and then moved atomically to
its final destination, using the same process as
`pack-write.c:write_idx_file`.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:16 +00:00
|
|
|
{
|
|
|
|
uint32_t pos = 0;
|
|
|
|
struct ewah_iterator it;
|
|
|
|
eword_t word;
|
|
|
|
|
|
|
|
ewah_iterator_init(&it, source);
|
|
|
|
|
|
|
|
while (ewah_iterator_next(&word, &it)) {
|
|
|
|
uint32_t offset, bit_pos;
|
|
|
|
|
2015-06-03 06:39:37 +00:00
|
|
|
for (offset = 0; offset < BITS_IN_EWORD; ++offset) {
|
pack-objects: implement bitmap writing
This commit extends more the functionality of `pack-objects` by allowing
it to write out a `.bitmap` index next to any written packs, together
with the `.idx` index that currently gets written.
If bitmap writing is enabled for a given repository (either by calling
`pack-objects` with the `--write-bitmap-index` flag or by having
`pack.writebitmaps` set to `true` in the config) and pack-objects is
writing a packfile that would normally be indexed (i.e. not piping to
stdout), we will attempt to write the corresponding bitmap index for the
packfile.
Bitmap index writing happens after the packfile and its index has been
successfully written to disk (`finish_tmp_packfile`). The process is
performed in several steps:
1. `bitmap_writer_set_checksum`: this call stores the partial
checksum for the packfile being written; the checksum will be
written in the resulting bitmap index to verify its integrity
2. `bitmap_writer_build_type_index`: this call uses the array of
`struct object_entry` that has just been sorted when writing out
the actual packfile index to disk to generate 4 type-index bitmaps
(one for each object type).
These bitmaps have their nth bit set if the given object is of
the bitmap's type. E.g. the nth bit of the Commits bitmap will be
1 if the nth object in the packfile index is a commit.
This is a very cheap operation because the bitmap writing code has
access to the metadata stored in the `struct object_entry` array,
and hence the real type for each object in the packfile.
3. `bitmap_writer_reuse_bitmaps`: if there exists an existing bitmap
index for one of the packfiles we're trying to repack, this call
will efficiently rebuild the existing bitmaps so they can be
reused on the new index. All the existing bitmaps will be stored
in a `reuse` hash table, and the commit selection phase will
prioritize these when selecting, as they can be written directly
to the new index without having to perform a revision walk to
fill the bitmap. This can greatly speed up the repack of a
repository that already has bitmaps.
4. `bitmap_writer_select_commits`: if bitmap writing is enabled for
a given `pack-objects` run, the sequence of commits generated
during the Counting Objects phase will be stored in an array.
We then use that array to build up the list of selected commits.
Writing a bitmap in the index for each object in the repository
would be cost-prohibitive, so we use a simple heuristic to pick
the commits that will be indexed with bitmaps.
The current heuristics are a simplified version of JGit's
original implementation. We select a higher density of commits
depending on their age: the 100 most recent commits are always
selected, after that we pick 1 commit of each 100, and the gap
increases as the commits grow older. On top of that, we make sure
that every single branch that has not been merged (all the tips
that would be required from a clone) gets their own bitmap, and
when selecting commits between a gap, we tend to prioritize the
commit with the most parents.
Do note that there is no right/wrong way to perform commit
selection; different selection algorithms will result in
different commits being selected, but there's no such thing as
"missing a commit". The bitmap walker algorithm implemented in
`prepare_bitmap_walk` is able to adapt to missing bitmaps by
performing manual walks that complete the bitmap: the ideal
selection algorithm, however, would select the commits that are
more likely to be used as roots for a walk in the future (e.g.
the tips of each branch, and so on) to ensure a bitmap for them
is always available.
5. `bitmap_writer_build`: this is the computationally expensive part
of bitmap generation. Based on the list of commits that were
selected in the previous step, we perform several incremental
walks to generate the bitmap for each commit.
The walks begin from the oldest commit, and are built up
incrementally for each branch. E.g. consider this dag where A, B,
C, D, E, F are the selected commits, and a, b, c, e are a chunk
of simplified history that will not receive bitmaps.
A---a---B--b--C--c--D
\
E--e--F
We start by building the bitmap for A, using A as the root for a
revision walk and marking all the objects that are reachable
until the walk is over. Once this bitmap is stored, we reuse the
bitmap walker to perform the walk for B, assuming that once we
reach A again, the walk will be terminated because A has already
been SEEN on the previous walk.
This process is repeated for C, and D, but when we try to
generate the bitmaps for E, we can reuse neither the current walk
nor the bitmap we have generated so far.
What we do now is resetting both the walk and clearing the
bitmap, and performing the walk from scratch using E as the
origin. This new walk, however, does not need to be completed.
Once we hit B, we can lookup the bitmap we have already stored
for that commit and OR it with the existing bitmap we've composed
so far, allowing us to limit the walk early.
After all the bitmaps have been generated, another iteration
through the list of commits is performed to find the best XOR
offsets for compression before writing them to disk. Because of
the incremental nature of these bitmaps, XORing one of them with
its predecesor results in a minimal "bitmap delta" most of the
time. We can write this delta to the on-disk bitmap index, and
then re-compose the original bitmaps by XORing them again when
loaded.
This is a phase very similar to pack-object's `find_delta` (using
bitmaps instead of objects, of course), except the heuristics
have been greatly simplified: we only check the 10 bitmaps before
any given one to find best compressing one. This gives good
results in practice, because there is locality in the ordering of
the objects (and therefore bitmaps) in the packfile.
6. `bitmap_writer_finish`: the last step in the process is
serializing to disk all the bitmap data that has been generated
in the two previous steps.
The bitmap is written to a tmp file and then moved atomically to
its final destination, using the same process as
`pack-write.c:write_idx_file`.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:16 +00:00
|
|
|
if ((word >> offset) == 0)
|
|
|
|
break;
|
|
|
|
|
|
|
|
offset += ewah_bit_ctz64(word >> offset);
|
|
|
|
|
|
|
|
bit_pos = reposition[pos + offset];
|
|
|
|
if (bit_pos > 0)
|
|
|
|
bitmap_set(dest, bit_pos - 1);
|
|
|
|
else /* can't reuse, we don't have the object */
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
2015-06-03 06:39:37 +00:00
|
|
|
pos += BITS_IN_EWORD;
|
pack-objects: implement bitmap writing
This commit extends more the functionality of `pack-objects` by allowing
it to write out a `.bitmap` index next to any written packs, together
with the `.idx` index that currently gets written.
If bitmap writing is enabled for a given repository (either by calling
`pack-objects` with the `--write-bitmap-index` flag or by having
`pack.writebitmaps` set to `true` in the config) and pack-objects is
writing a packfile that would normally be indexed (i.e. not piping to
stdout), we will attempt to write the corresponding bitmap index for the
packfile.
Bitmap index writing happens after the packfile and its index has been
successfully written to disk (`finish_tmp_packfile`). The process is
performed in several steps:
1. `bitmap_writer_set_checksum`: this call stores the partial
checksum for the packfile being written; the checksum will be
written in the resulting bitmap index to verify its integrity
2. `bitmap_writer_build_type_index`: this call uses the array of
`struct object_entry` that has just been sorted when writing out
the actual packfile index to disk to generate 4 type-index bitmaps
(one for each object type).
These bitmaps have their nth bit set if the given object is of
the bitmap's type. E.g. the nth bit of the Commits bitmap will be
1 if the nth object in the packfile index is a commit.
This is a very cheap operation because the bitmap writing code has
access to the metadata stored in the `struct object_entry` array,
and hence the real type for each object in the packfile.
3. `bitmap_writer_reuse_bitmaps`: if there exists an existing bitmap
index for one of the packfiles we're trying to repack, this call
will efficiently rebuild the existing bitmaps so they can be
reused on the new index. All the existing bitmaps will be stored
in a `reuse` hash table, and the commit selection phase will
prioritize these when selecting, as they can be written directly
to the new index without having to perform a revision walk to
fill the bitmap. This can greatly speed up the repack of a
repository that already has bitmaps.
4. `bitmap_writer_select_commits`: if bitmap writing is enabled for
a given `pack-objects` run, the sequence of commits generated
during the Counting Objects phase will be stored in an array.
We then use that array to build up the list of selected commits.
Writing a bitmap in the index for each object in the repository
would be cost-prohibitive, so we use a simple heuristic to pick
the commits that will be indexed with bitmaps.
The current heuristics are a simplified version of JGit's
original implementation. We select a higher density of commits
depending on their age: the 100 most recent commits are always
selected, after that we pick 1 commit of each 100, and the gap
increases as the commits grow older. On top of that, we make sure
that every single branch that has not been merged (all the tips
that would be required from a clone) gets their own bitmap, and
when selecting commits between a gap, we tend to prioritize the
commit with the most parents.
Do note that there is no right/wrong way to perform commit
selection; different selection algorithms will result in
different commits being selected, but there's no such thing as
"missing a commit". The bitmap walker algorithm implemented in
`prepare_bitmap_walk` is able to adapt to missing bitmaps by
performing manual walks that complete the bitmap: the ideal
selection algorithm, however, would select the commits that are
more likely to be used as roots for a walk in the future (e.g.
the tips of each branch, and so on) to ensure a bitmap for them
is always available.
5. `bitmap_writer_build`: this is the computationally expensive part
of bitmap generation. Based on the list of commits that were
selected in the previous step, we perform several incremental
walks to generate the bitmap for each commit.
The walks begin from the oldest commit, and are built up
incrementally for each branch. E.g. consider this dag where A, B,
C, D, E, F are the selected commits, and a, b, c, e are a chunk
of simplified history that will not receive bitmaps.
A---a---B--b--C--c--D
\
E--e--F
We start by building the bitmap for A, using A as the root for a
revision walk and marking all the objects that are reachable
until the walk is over. Once this bitmap is stored, we reuse the
bitmap walker to perform the walk for B, assuming that once we
reach A again, the walk will be terminated because A has already
been SEEN on the previous walk.
This process is repeated for C, and D, but when we try to
generate the bitmaps for E, we can reuse neither the current walk
nor the bitmap we have generated so far.
What we do now is resetting both the walk and clearing the
bitmap, and performing the walk from scratch using E as the
origin. This new walk, however, does not need to be completed.
Once we hit B, we can lookup the bitmap we have already stored
for that commit and OR it with the existing bitmap we've composed
so far, allowing us to limit the walk early.
After all the bitmaps have been generated, another iteration
through the list of commits is performed to find the best XOR
offsets for compression before writing them to disk. Because of
the incremental nature of these bitmaps, XORing one of them with
its predecesor results in a minimal "bitmap delta" most of the
time. We can write this delta to the on-disk bitmap index, and
then re-compose the original bitmaps by XORing them again when
loaded.
This is a phase very similar to pack-object's `find_delta` (using
bitmaps instead of objects, of course), except the heuristics
have been greatly simplified: we only check the 10 bitmaps before
any given one to find best compressing one. This gives good
results in practice, because there is locality in the ordering of
the objects (and therefore bitmaps) in the packfile.
6. `bitmap_writer_finish`: the last step in the process is
serializing to disk all the bitmap data that has been generated
in the two previous steps.
The bitmap is written to a tmp file and then moved atomically to
its final destination, using the same process as
`pack-write.c:write_idx_file`.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:16 +00:00
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
pack-bitmap-write: ignore BITMAP_FLAG_REUSE
The on-disk bitmap format has a flag to mark a bitmap to be "reused".
This is a rather curious feature, and works like this:
- a run of pack-objects would decide to mark the last 80% of the
bitmaps it generates with the reuse flag
- the next time we generate bitmaps, we'd see those reuse flags from
the last run, and mark those commits as special:
- we'd be more likely to select those commits to get bitmaps in
the new output
- when generating the bitmap for a selected commit, we'd reuse the
old bitmap as-is (rearranging the bits to match the new pack, of
course)
However, neither of these behaviors particularly makes sense.
Just because a commit happened to be bitmapped last time does not make
it a good candidate for having a bitmap this time. In particular, we may
choose bitmaps based on how recent they are in history, or whether a ref
tip points to them, and those things will change. We're better off
re-considering fresh which commits are good candidates.
Reusing the existing bitmap _is_ a reasonable thing to do to save
computation. But only reusing exact bitmaps is a weak form of this. If
we have an old bitmap for A and now want a new bitmap for its child, we
should be able to compute that only by looking at trees and that are new
to the child. But this code would consider only exact reuse (which is
perhaps why it was eager to select those commits in the first place).
Furthermore, the recent switch to the reverse-edge algorithm for
generating bitmaps dropped this optimization entirely (and yet still
performs better).
So let's do a few cleanups:
- drop the whole "reusing bitmaps" phase of generating bitmaps. It's
not helping anything, and is mostly unused code (or worse, code that
is using CPU but not doing anything useful)
- drop the use of the on-disk reuse flag to select commits to bitmap
- stop setting the on-disk reuse flag in bitmaps we generate (since
nothing respects it anymore)
We will keep a few innards of the reuse code, which will help us
implement a more capable version of the "reuse" optimization:
- simplify rebuild_existing_bitmaps() into a function that only builds
the mapping of bits between the old and new orders, but doesn't
actually convert any bitmaps
- make rebuild_bitmap() public; we'll call it lazily to convert bitmaps
as we traverse (using the mapping created above)
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-12-08 22:04:34 +00:00
|
|
|
uint32_t *create_bitmap_mapping(struct bitmap_index *bitmap_git,
|
|
|
|
struct packing_data *mapping)
|
pack-objects: implement bitmap writing
This commit extends more the functionality of `pack-objects` by allowing
it to write out a `.bitmap` index next to any written packs, together
with the `.idx` index that currently gets written.
If bitmap writing is enabled for a given repository (either by calling
`pack-objects` with the `--write-bitmap-index` flag or by having
`pack.writebitmaps` set to `true` in the config) and pack-objects is
writing a packfile that would normally be indexed (i.e. not piping to
stdout), we will attempt to write the corresponding bitmap index for the
packfile.
Bitmap index writing happens after the packfile and its index has been
successfully written to disk (`finish_tmp_packfile`). The process is
performed in several steps:
1. `bitmap_writer_set_checksum`: this call stores the partial
checksum for the packfile being written; the checksum will be
written in the resulting bitmap index to verify its integrity
2. `bitmap_writer_build_type_index`: this call uses the array of
`struct object_entry` that has just been sorted when writing out
the actual packfile index to disk to generate 4 type-index bitmaps
(one for each object type).
These bitmaps have their nth bit set if the given object is of
the bitmap's type. E.g. the nth bit of the Commits bitmap will be
1 if the nth object in the packfile index is a commit.
This is a very cheap operation because the bitmap writing code has
access to the metadata stored in the `struct object_entry` array,
and hence the real type for each object in the packfile.
3. `bitmap_writer_reuse_bitmaps`: if there exists an existing bitmap
index for one of the packfiles we're trying to repack, this call
will efficiently rebuild the existing bitmaps so they can be
reused on the new index. All the existing bitmaps will be stored
in a `reuse` hash table, and the commit selection phase will
prioritize these when selecting, as they can be written directly
to the new index without having to perform a revision walk to
fill the bitmap. This can greatly speed up the repack of a
repository that already has bitmaps.
4. `bitmap_writer_select_commits`: if bitmap writing is enabled for
a given `pack-objects` run, the sequence of commits generated
during the Counting Objects phase will be stored in an array.
We then use that array to build up the list of selected commits.
Writing a bitmap in the index for each object in the repository
would be cost-prohibitive, so we use a simple heuristic to pick
the commits that will be indexed with bitmaps.
The current heuristics are a simplified version of JGit's
original implementation. We select a higher density of commits
depending on their age: the 100 most recent commits are always
selected, after that we pick 1 commit of each 100, and the gap
increases as the commits grow older. On top of that, we make sure
that every single branch that has not been merged (all the tips
that would be required from a clone) gets their own bitmap, and
when selecting commits between a gap, we tend to prioritize the
commit with the most parents.
Do note that there is no right/wrong way to perform commit
selection; different selection algorithms will result in
different commits being selected, but there's no such thing as
"missing a commit". The bitmap walker algorithm implemented in
`prepare_bitmap_walk` is able to adapt to missing bitmaps by
performing manual walks that complete the bitmap: the ideal
selection algorithm, however, would select the commits that are
more likely to be used as roots for a walk in the future (e.g.
the tips of each branch, and so on) to ensure a bitmap for them
is always available.
5. `bitmap_writer_build`: this is the computationally expensive part
of bitmap generation. Based on the list of commits that were
selected in the previous step, we perform several incremental
walks to generate the bitmap for each commit.
The walks begin from the oldest commit, and are built up
incrementally for each branch. E.g. consider this dag where A, B,
C, D, E, F are the selected commits, and a, b, c, e are a chunk
of simplified history that will not receive bitmaps.
A---a---B--b--C--c--D
\
E--e--F
We start by building the bitmap for A, using A as the root for a
revision walk and marking all the objects that are reachable
until the walk is over. Once this bitmap is stored, we reuse the
bitmap walker to perform the walk for B, assuming that once we
reach A again, the walk will be terminated because A has already
been SEEN on the previous walk.
This process is repeated for C, and D, but when we try to
generate the bitmaps for E, we can reuse neither the current walk
nor the bitmap we have generated so far.
What we do now is resetting both the walk and clearing the
bitmap, and performing the walk from scratch using E as the
origin. This new walk, however, does not need to be completed.
Once we hit B, we can lookup the bitmap we have already stored
for that commit and OR it with the existing bitmap we've composed
so far, allowing us to limit the walk early.
After all the bitmaps have been generated, another iteration
through the list of commits is performed to find the best XOR
offsets for compression before writing them to disk. Because of
the incremental nature of these bitmaps, XORing one of them with
its predecesor results in a minimal "bitmap delta" most of the
time. We can write this delta to the on-disk bitmap index, and
then re-compose the original bitmaps by XORing them again when
loaded.
This is a phase very similar to pack-object's `find_delta` (using
bitmaps instead of objects, of course), except the heuristics
have been greatly simplified: we only check the 10 bitmaps before
any given one to find best compressing one. This gives good
results in practice, because there is locality in the ordering of
the objects (and therefore bitmaps) in the packfile.
6. `bitmap_writer_finish`: the last step in the process is
serializing to disk all the bitmap data that has been generated
in the two previous steps.
The bitmap is written to a tmp file and then moved atomically to
its final destination, using the same process as
`pack-write.c:write_idx_file`.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:16 +00:00
|
|
|
{
|
|
|
|
uint32_t i, num_objects;
|
|
|
|
uint32_t *reposition;
|
|
|
|
|
2021-08-31 20:52:21 +00:00
|
|
|
if (!bitmap_is_midx(bitmap_git))
|
|
|
|
load_reverse_index(bitmap_git);
|
|
|
|
else if (load_midx_revindex(bitmap_git->midx) < 0)
|
|
|
|
BUG("rebuild_existing_bitmaps: missing required rev-cache "
|
|
|
|
"extension");
|
|
|
|
|
2021-08-31 20:52:12 +00:00
|
|
|
num_objects = bitmap_num_objects(bitmap_git);
|
2021-03-13 16:17:22 +00:00
|
|
|
CALLOC_ARRAY(reposition, num_objects);
|
pack-objects: implement bitmap writing
This commit extends more the functionality of `pack-objects` by allowing
it to write out a `.bitmap` index next to any written packs, together
with the `.idx` index that currently gets written.
If bitmap writing is enabled for a given repository (either by calling
`pack-objects` with the `--write-bitmap-index` flag or by having
`pack.writebitmaps` set to `true` in the config) and pack-objects is
writing a packfile that would normally be indexed (i.e. not piping to
stdout), we will attempt to write the corresponding bitmap index for the
packfile.
Bitmap index writing happens after the packfile and its index has been
successfully written to disk (`finish_tmp_packfile`). The process is
performed in several steps:
1. `bitmap_writer_set_checksum`: this call stores the partial
checksum for the packfile being written; the checksum will be
written in the resulting bitmap index to verify its integrity
2. `bitmap_writer_build_type_index`: this call uses the array of
`struct object_entry` that has just been sorted when writing out
the actual packfile index to disk to generate 4 type-index bitmaps
(one for each object type).
These bitmaps have their nth bit set if the given object is of
the bitmap's type. E.g. the nth bit of the Commits bitmap will be
1 if the nth object in the packfile index is a commit.
This is a very cheap operation because the bitmap writing code has
access to the metadata stored in the `struct object_entry` array,
and hence the real type for each object in the packfile.
3. `bitmap_writer_reuse_bitmaps`: if there exists an existing bitmap
index for one of the packfiles we're trying to repack, this call
will efficiently rebuild the existing bitmaps so they can be
reused on the new index. All the existing bitmaps will be stored
in a `reuse` hash table, and the commit selection phase will
prioritize these when selecting, as they can be written directly
to the new index without having to perform a revision walk to
fill the bitmap. This can greatly speed up the repack of a
repository that already has bitmaps.
4. `bitmap_writer_select_commits`: if bitmap writing is enabled for
a given `pack-objects` run, the sequence of commits generated
during the Counting Objects phase will be stored in an array.
We then use that array to build up the list of selected commits.
Writing a bitmap in the index for each object in the repository
would be cost-prohibitive, so we use a simple heuristic to pick
the commits that will be indexed with bitmaps.
The current heuristics are a simplified version of JGit's
original implementation. We select a higher density of commits
depending on their age: the 100 most recent commits are always
selected, after that we pick 1 commit of each 100, and the gap
increases as the commits grow older. On top of that, we make sure
that every single branch that has not been merged (all the tips
that would be required from a clone) gets their own bitmap, and
when selecting commits between a gap, we tend to prioritize the
commit with the most parents.
Do note that there is no right/wrong way to perform commit
selection; different selection algorithms will result in
different commits being selected, but there's no such thing as
"missing a commit". The bitmap walker algorithm implemented in
`prepare_bitmap_walk` is able to adapt to missing bitmaps by
performing manual walks that complete the bitmap: the ideal
selection algorithm, however, would select the commits that are
more likely to be used as roots for a walk in the future (e.g.
the tips of each branch, and so on) to ensure a bitmap for them
is always available.
5. `bitmap_writer_build`: this is the computationally expensive part
of bitmap generation. Based on the list of commits that were
selected in the previous step, we perform several incremental
walks to generate the bitmap for each commit.
The walks begin from the oldest commit, and are built up
incrementally for each branch. E.g. consider this dag where A, B,
C, D, E, F are the selected commits, and a, b, c, e are a chunk
of simplified history that will not receive bitmaps.
A---a---B--b--C--c--D
\
E--e--F
We start by building the bitmap for A, using A as the root for a
revision walk and marking all the objects that are reachable
until the walk is over. Once this bitmap is stored, we reuse the
bitmap walker to perform the walk for B, assuming that once we
reach A again, the walk will be terminated because A has already
been SEEN on the previous walk.
This process is repeated for C, and D, but when we try to
generate the bitmaps for E, we can reuse neither the current walk
nor the bitmap we have generated so far.
What we do now is resetting both the walk and clearing the
bitmap, and performing the walk from scratch using E as the
origin. This new walk, however, does not need to be completed.
Once we hit B, we can lookup the bitmap we have already stored
for that commit and OR it with the existing bitmap we've composed
so far, allowing us to limit the walk early.
After all the bitmaps have been generated, another iteration
through the list of commits is performed to find the best XOR
offsets for compression before writing them to disk. Because of
the incremental nature of these bitmaps, XORing one of them with
its predecesor results in a minimal "bitmap delta" most of the
time. We can write this delta to the on-disk bitmap index, and
then re-compose the original bitmaps by XORing them again when
loaded.
This is a phase very similar to pack-object's `find_delta` (using
bitmaps instead of objects, of course), except the heuristics
have been greatly simplified: we only check the 10 bitmaps before
any given one to find best compressing one. This gives good
results in practice, because there is locality in the ordering of
the objects (and therefore bitmaps) in the packfile.
6. `bitmap_writer_finish`: the last step in the process is
serializing to disk all the bitmap data that has been generated
in the two previous steps.
The bitmap is written to a tmp file and then moved atomically to
its final destination, using the same process as
`pack-write.c:write_idx_file`.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:16 +00:00
|
|
|
|
|
|
|
for (i = 0; i < num_objects; ++i) {
|
2019-06-20 07:41:03 +00:00
|
|
|
struct object_id oid;
|
pack-objects: implement bitmap writing
This commit extends more the functionality of `pack-objects` by allowing
it to write out a `.bitmap` index next to any written packs, together
with the `.idx` index that currently gets written.
If bitmap writing is enabled for a given repository (either by calling
`pack-objects` with the `--write-bitmap-index` flag or by having
`pack.writebitmaps` set to `true` in the config) and pack-objects is
writing a packfile that would normally be indexed (i.e. not piping to
stdout), we will attempt to write the corresponding bitmap index for the
packfile.
Bitmap index writing happens after the packfile and its index has been
successfully written to disk (`finish_tmp_packfile`). The process is
performed in several steps:
1. `bitmap_writer_set_checksum`: this call stores the partial
checksum for the packfile being written; the checksum will be
written in the resulting bitmap index to verify its integrity
2. `bitmap_writer_build_type_index`: this call uses the array of
`struct object_entry` that has just been sorted when writing out
the actual packfile index to disk to generate 4 type-index bitmaps
(one for each object type).
These bitmaps have their nth bit set if the given object is of
the bitmap's type. E.g. the nth bit of the Commits bitmap will be
1 if the nth object in the packfile index is a commit.
This is a very cheap operation because the bitmap writing code has
access to the metadata stored in the `struct object_entry` array,
and hence the real type for each object in the packfile.
3. `bitmap_writer_reuse_bitmaps`: if there exists an existing bitmap
index for one of the packfiles we're trying to repack, this call
will efficiently rebuild the existing bitmaps so they can be
reused on the new index. All the existing bitmaps will be stored
in a `reuse` hash table, and the commit selection phase will
prioritize these when selecting, as they can be written directly
to the new index without having to perform a revision walk to
fill the bitmap. This can greatly speed up the repack of a
repository that already has bitmaps.
4. `bitmap_writer_select_commits`: if bitmap writing is enabled for
a given `pack-objects` run, the sequence of commits generated
during the Counting Objects phase will be stored in an array.
We then use that array to build up the list of selected commits.
Writing a bitmap in the index for each object in the repository
would be cost-prohibitive, so we use a simple heuristic to pick
the commits that will be indexed with bitmaps.
The current heuristics are a simplified version of JGit's
original implementation. We select a higher density of commits
depending on their age: the 100 most recent commits are always
selected, after that we pick 1 commit of each 100, and the gap
increases as the commits grow older. On top of that, we make sure
that every single branch that has not been merged (all the tips
that would be required from a clone) gets their own bitmap, and
when selecting commits between a gap, we tend to prioritize the
commit with the most parents.
Do note that there is no right/wrong way to perform commit
selection; different selection algorithms will result in
different commits being selected, but there's no such thing as
"missing a commit". The bitmap walker algorithm implemented in
`prepare_bitmap_walk` is able to adapt to missing bitmaps by
performing manual walks that complete the bitmap: the ideal
selection algorithm, however, would select the commits that are
more likely to be used as roots for a walk in the future (e.g.
the tips of each branch, and so on) to ensure a bitmap for them
is always available.
5. `bitmap_writer_build`: this is the computationally expensive part
of bitmap generation. Based on the list of commits that were
selected in the previous step, we perform several incremental
walks to generate the bitmap for each commit.
The walks begin from the oldest commit, and are built up
incrementally for each branch. E.g. consider this dag where A, B,
C, D, E, F are the selected commits, and a, b, c, e are a chunk
of simplified history that will not receive bitmaps.
A---a---B--b--C--c--D
\
E--e--F
We start by building the bitmap for A, using A as the root for a
revision walk and marking all the objects that are reachable
until the walk is over. Once this bitmap is stored, we reuse the
bitmap walker to perform the walk for B, assuming that once we
reach A again, the walk will be terminated because A has already
been SEEN on the previous walk.
This process is repeated for C, and D, but when we try to
generate the bitmaps for E, we can reuse neither the current walk
nor the bitmap we have generated so far.
What we do now is resetting both the walk and clearing the
bitmap, and performing the walk from scratch using E as the
origin. This new walk, however, does not need to be completed.
Once we hit B, we can lookup the bitmap we have already stored
for that commit and OR it with the existing bitmap we've composed
so far, allowing us to limit the walk early.
After all the bitmaps have been generated, another iteration
through the list of commits is performed to find the best XOR
offsets for compression before writing them to disk. Because of
the incremental nature of these bitmaps, XORing one of them with
its predecesor results in a minimal "bitmap delta" most of the
time. We can write this delta to the on-disk bitmap index, and
then re-compose the original bitmaps by XORing them again when
loaded.
This is a phase very similar to pack-object's `find_delta` (using
bitmaps instead of objects, of course), except the heuristics
have been greatly simplified: we only check the 10 bitmaps before
any given one to find best compressing one. This gives good
results in practice, because there is locality in the ordering of
the objects (and therefore bitmaps) in the packfile.
6. `bitmap_writer_finish`: the last step in the process is
serializing to disk all the bitmap data that has been generated
in the two previous steps.
The bitmap is written to a tmp file and then moved atomically to
its final destination, using the same process as
`pack-write.c:write_idx_file`.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:16 +00:00
|
|
|
struct object_entry *oe;
|
pack-bitmap.c: propagate namehash values from existing bitmaps
When an old bitmap exists while writing a new one, we load it and build
a "reposition" table which maps bit positions of objects from the old
bitmap to their respective positions in the new bitmap. This can help
when we encounter a commit which was selected in both the old and new
bitmap, since we only need to permute its bit (not recompute it from
scratch).
We do not, however, repurpose existing namehash values in the case of
the hash-cache extension. There has been thus far no good reason to do
so, since all of the namehash values for objects in the new bitmap would
be populated during the traversal that was just performed by
pack-objects when generating single-pack reachability bitmaps.
But this isn't the case for multi-pack bitmaps, which are written via
`git multi-pack-index write --bitmap` and do not perform any traversal.
In this case all namehash values are set to zero, but we don't even
bother to check the `pack.writeBitmapHashcache` option anyway, so it
fails to matter.
There are two approaches we could take to fill in non-zero hash-cache
values:
- have either the multi-pack-index builtin run its own
traversal to attempt to fill in some values, or let a hypothetical
caller (like `pack-objects` when `repack` eventually drives the
`multi-pack-index` builtin) fill in the values they found during
their traversal
- or copy any existing namehash values that were stored in an
existing bitmap to their corresponding positions in the new bitmap
In a system where a repository is generally repacked with `git repack
--geometric=<d>` and occasionally repacked with `git repack -a`, the
hash-cache coverage will tend towards all objects.
Since populating the hash-cache is additive (i.e., doing so only helps
our delta search), any intermediate lack of full coverage is just fine.
So let's start by just propagating any values from the existing
hash-cache if we see one.
The next patch will respect the `pack.writeBitmapHashcache` option while
writing MIDX bitmaps, and then test this new behavior.
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-09-14 22:06:04 +00:00
|
|
|
uint32_t index_pos;
|
pack-objects: implement bitmap writing
This commit extends more the functionality of `pack-objects` by allowing
it to write out a `.bitmap` index next to any written packs, together
with the `.idx` index that currently gets written.
If bitmap writing is enabled for a given repository (either by calling
`pack-objects` with the `--write-bitmap-index` flag or by having
`pack.writebitmaps` set to `true` in the config) and pack-objects is
writing a packfile that would normally be indexed (i.e. not piping to
stdout), we will attempt to write the corresponding bitmap index for the
packfile.
Bitmap index writing happens after the packfile and its index has been
successfully written to disk (`finish_tmp_packfile`). The process is
performed in several steps:
1. `bitmap_writer_set_checksum`: this call stores the partial
checksum for the packfile being written; the checksum will be
written in the resulting bitmap index to verify its integrity
2. `bitmap_writer_build_type_index`: this call uses the array of
`struct object_entry` that has just been sorted when writing out
the actual packfile index to disk to generate 4 type-index bitmaps
(one for each object type).
These bitmaps have their nth bit set if the given object is of
the bitmap's type. E.g. the nth bit of the Commits bitmap will be
1 if the nth object in the packfile index is a commit.
This is a very cheap operation because the bitmap writing code has
access to the metadata stored in the `struct object_entry` array,
and hence the real type for each object in the packfile.
3. `bitmap_writer_reuse_bitmaps`: if there exists an existing bitmap
index for one of the packfiles we're trying to repack, this call
will efficiently rebuild the existing bitmaps so they can be
reused on the new index. All the existing bitmaps will be stored
in a `reuse` hash table, and the commit selection phase will
prioritize these when selecting, as they can be written directly
to the new index without having to perform a revision walk to
fill the bitmap. This can greatly speed up the repack of a
repository that already has bitmaps.
4. `bitmap_writer_select_commits`: if bitmap writing is enabled for
a given `pack-objects` run, the sequence of commits generated
during the Counting Objects phase will be stored in an array.
We then use that array to build up the list of selected commits.
Writing a bitmap in the index for each object in the repository
would be cost-prohibitive, so we use a simple heuristic to pick
the commits that will be indexed with bitmaps.
The current heuristics are a simplified version of JGit's
original implementation. We select a higher density of commits
depending on their age: the 100 most recent commits are always
selected, after that we pick 1 commit of each 100, and the gap
increases as the commits grow older. On top of that, we make sure
that every single branch that has not been merged (all the tips
that would be required from a clone) gets their own bitmap, and
when selecting commits between a gap, we tend to prioritize the
commit with the most parents.
Do note that there is no right/wrong way to perform commit
selection; different selection algorithms will result in
different commits being selected, but there's no such thing as
"missing a commit". The bitmap walker algorithm implemented in
`prepare_bitmap_walk` is able to adapt to missing bitmaps by
performing manual walks that complete the bitmap: the ideal
selection algorithm, however, would select the commits that are
more likely to be used as roots for a walk in the future (e.g.
the tips of each branch, and so on) to ensure a bitmap for them
is always available.
5. `bitmap_writer_build`: this is the computationally expensive part
of bitmap generation. Based on the list of commits that were
selected in the previous step, we perform several incremental
walks to generate the bitmap for each commit.
The walks begin from the oldest commit, and are built up
incrementally for each branch. E.g. consider this dag where A, B,
C, D, E, F are the selected commits, and a, b, c, e are a chunk
of simplified history that will not receive bitmaps.
A---a---B--b--C--c--D
\
E--e--F
We start by building the bitmap for A, using A as the root for a
revision walk and marking all the objects that are reachable
until the walk is over. Once this bitmap is stored, we reuse the
bitmap walker to perform the walk for B, assuming that once we
reach A again, the walk will be terminated because A has already
been SEEN on the previous walk.
This process is repeated for C, and D, but when we try to
generate the bitmaps for E, we can reuse neither the current walk
nor the bitmap we have generated so far.
What we do now is resetting both the walk and clearing the
bitmap, and performing the walk from scratch using E as the
origin. This new walk, however, does not need to be completed.
Once we hit B, we can lookup the bitmap we have already stored
for that commit and OR it with the existing bitmap we've composed
so far, allowing us to limit the walk early.
After all the bitmaps have been generated, another iteration
through the list of commits is performed to find the best XOR
offsets for compression before writing them to disk. Because of
the incremental nature of these bitmaps, XORing one of them with
its predecesor results in a minimal "bitmap delta" most of the
time. We can write this delta to the on-disk bitmap index, and
then re-compose the original bitmaps by XORing them again when
loaded.
This is a phase very similar to pack-object's `find_delta` (using
bitmaps instead of objects, of course), except the heuristics
have been greatly simplified: we only check the 10 bitmaps before
any given one to find best compressing one. This gives good
results in practice, because there is locality in the ordering of
the objects (and therefore bitmaps) in the packfile.
6. `bitmap_writer_finish`: the last step in the process is
serializing to disk all the bitmap data that has been generated
in the two previous steps.
The bitmap is written to a tmp file and then moved atomically to
its final destination, using the same process as
`pack-write.c:write_idx_file`.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:16 +00:00
|
|
|
|
2021-08-31 20:52:21 +00:00
|
|
|
if (bitmap_is_midx(bitmap_git))
|
pack-bitmap.c: propagate namehash values from existing bitmaps
When an old bitmap exists while writing a new one, we load it and build
a "reposition" table which maps bit positions of objects from the old
bitmap to their respective positions in the new bitmap. This can help
when we encounter a commit which was selected in both the old and new
bitmap, since we only need to permute its bit (not recompute it from
scratch).
We do not, however, repurpose existing namehash values in the case of
the hash-cache extension. There has been thus far no good reason to do
so, since all of the namehash values for objects in the new bitmap would
be populated during the traversal that was just performed by
pack-objects when generating single-pack reachability bitmaps.
But this isn't the case for multi-pack bitmaps, which are written via
`git multi-pack-index write --bitmap` and do not perform any traversal.
In this case all namehash values are set to zero, but we don't even
bother to check the `pack.writeBitmapHashcache` option anyway, so it
fails to matter.
There are two approaches we could take to fill in non-zero hash-cache
values:
- have either the multi-pack-index builtin run its own
traversal to attempt to fill in some values, or let a hypothetical
caller (like `pack-objects` when `repack` eventually drives the
`multi-pack-index` builtin) fill in the values they found during
their traversal
- or copy any existing namehash values that were stored in an
existing bitmap to their corresponding positions in the new bitmap
In a system where a repository is generally repacked with `git repack
--geometric=<d>` and occasionally repacked with `git repack -a`, the
hash-cache coverage will tend towards all objects.
Since populating the hash-cache is additive (i.e., doing so only helps
our delta search), any intermediate lack of full coverage is just fine.
So let's start by just propagating any values from the existing
hash-cache if we see one.
The next patch will respect the `pack.writeBitmapHashcache` option while
writing MIDX bitmaps, and then test this new behavior.
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-09-14 22:06:04 +00:00
|
|
|
index_pos = pack_pos_to_midx(bitmap_git->midx, i);
|
2021-08-31 20:52:21 +00:00
|
|
|
else
|
pack-bitmap.c: propagate namehash values from existing bitmaps
When an old bitmap exists while writing a new one, we load it and build
a "reposition" table which maps bit positions of objects from the old
bitmap to their respective positions in the new bitmap. This can help
when we encounter a commit which was selected in both the old and new
bitmap, since we only need to permute its bit (not recompute it from
scratch).
We do not, however, repurpose existing namehash values in the case of
the hash-cache extension. There has been thus far no good reason to do
so, since all of the namehash values for objects in the new bitmap would
be populated during the traversal that was just performed by
pack-objects when generating single-pack reachability bitmaps.
But this isn't the case for multi-pack bitmaps, which are written via
`git multi-pack-index write --bitmap` and do not perform any traversal.
In this case all namehash values are set to zero, but we don't even
bother to check the `pack.writeBitmapHashcache` option anyway, so it
fails to matter.
There are two approaches we could take to fill in non-zero hash-cache
values:
- have either the multi-pack-index builtin run its own
traversal to attempt to fill in some values, or let a hypothetical
caller (like `pack-objects` when `repack` eventually drives the
`multi-pack-index` builtin) fill in the values they found during
their traversal
- or copy any existing namehash values that were stored in an
existing bitmap to their corresponding positions in the new bitmap
In a system where a repository is generally repacked with `git repack
--geometric=<d>` and occasionally repacked with `git repack -a`, the
hash-cache coverage will tend towards all objects.
Since populating the hash-cache is additive (i.e., doing so only helps
our delta search), any intermediate lack of full coverage is just fine.
So let's start by just propagating any values from the existing
hash-cache if we see one.
The next patch will respect the `pack.writeBitmapHashcache` option while
writing MIDX bitmaps, and then test this new behavior.
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-09-14 22:06:04 +00:00
|
|
|
index_pos = pack_pos_to_index(bitmap_git->pack, i);
|
|
|
|
nth_bitmap_object_oid(bitmap_git, &oid, index_pos);
|
pack-objects: drop packlist index_pos optimization
Once upon a time, the code to add an object to our packing list in
pack-objects all lived in a single function. It computed the position
within the hash table once, then used it to check if the object was
already present, and if not, to add it.
Later, in 2834bc27c1 (pack-objects: refactor the packing list,
2013-10-24), this was split into two functions: packlist_find() and
packlist_alloc(). We ended up with an "index_pos" variable that gets
passed through several functions to make it from one to the other.
The resulting code is rather confusing to follow. The "index_pos"
variable is sometimes undefined, if we don't yet have a hash table. This
works out in practice because in that case packlist_alloc() won't use it
at all, since it will have to create/grow the hash table. But it's hard
to verify that, and it does cause gcc 9.2.1's -Wmaybe-uninitialized to
complain when compiled with "-flto -O3" (rightfully, since we do pass
the uninitialized value as a function parameter, even if nobody ends up
using it).
All of this is to save computing the hash index again when we're
inserting into the hash table, which I found doesn't make a measurable
difference in the program runtime (which is not surprising, since we're
doing all kinds of other heavyweight things for each object).
Let's just drop this index_pos variable entirely, simplifying the code
(and pleasing the compiler).
We might be better still refactoring this custom hash table to use one
of our existing implementations (an oidmap, or a kh_oid_map). I stopped
short of that here, but this would be the likely first step towards that
anyway.
Reported-by: Stephan Beyer <s-beyer@gmx.net>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2019-09-06 01:36:05 +00:00
|
|
|
oe = packlist_find(mapping, &oid);
|
pack-objects: implement bitmap writing
This commit extends more the functionality of `pack-objects` by allowing
it to write out a `.bitmap` index next to any written packs, together
with the `.idx` index that currently gets written.
If bitmap writing is enabled for a given repository (either by calling
`pack-objects` with the `--write-bitmap-index` flag or by having
`pack.writebitmaps` set to `true` in the config) and pack-objects is
writing a packfile that would normally be indexed (i.e. not piping to
stdout), we will attempt to write the corresponding bitmap index for the
packfile.
Bitmap index writing happens after the packfile and its index has been
successfully written to disk (`finish_tmp_packfile`). The process is
performed in several steps:
1. `bitmap_writer_set_checksum`: this call stores the partial
checksum for the packfile being written; the checksum will be
written in the resulting bitmap index to verify its integrity
2. `bitmap_writer_build_type_index`: this call uses the array of
`struct object_entry` that has just been sorted when writing out
the actual packfile index to disk to generate 4 type-index bitmaps
(one for each object type).
These bitmaps have their nth bit set if the given object is of
the bitmap's type. E.g. the nth bit of the Commits bitmap will be
1 if the nth object in the packfile index is a commit.
This is a very cheap operation because the bitmap writing code has
access to the metadata stored in the `struct object_entry` array,
and hence the real type for each object in the packfile.
3. `bitmap_writer_reuse_bitmaps`: if there exists an existing bitmap
index for one of the packfiles we're trying to repack, this call
will efficiently rebuild the existing bitmaps so they can be
reused on the new index. All the existing bitmaps will be stored
in a `reuse` hash table, and the commit selection phase will
prioritize these when selecting, as they can be written directly
to the new index without having to perform a revision walk to
fill the bitmap. This can greatly speed up the repack of a
repository that already has bitmaps.
4. `bitmap_writer_select_commits`: if bitmap writing is enabled for
a given `pack-objects` run, the sequence of commits generated
during the Counting Objects phase will be stored in an array.
We then use that array to build up the list of selected commits.
Writing a bitmap in the index for each object in the repository
would be cost-prohibitive, so we use a simple heuristic to pick
the commits that will be indexed with bitmaps.
The current heuristics are a simplified version of JGit's
original implementation. We select a higher density of commits
depending on their age: the 100 most recent commits are always
selected, after that we pick 1 commit of each 100, and the gap
increases as the commits grow older. On top of that, we make sure
that every single branch that has not been merged (all the tips
that would be required from a clone) gets their own bitmap, and
when selecting commits between a gap, we tend to prioritize the
commit with the most parents.
Do note that there is no right/wrong way to perform commit
selection; different selection algorithms will result in
different commits being selected, but there's no such thing as
"missing a commit". The bitmap walker algorithm implemented in
`prepare_bitmap_walk` is able to adapt to missing bitmaps by
performing manual walks that complete the bitmap: the ideal
selection algorithm, however, would select the commits that are
more likely to be used as roots for a walk in the future (e.g.
the tips of each branch, and so on) to ensure a bitmap for them
is always available.
5. `bitmap_writer_build`: this is the computationally expensive part
of bitmap generation. Based on the list of commits that were
selected in the previous step, we perform several incremental
walks to generate the bitmap for each commit.
The walks begin from the oldest commit, and are built up
incrementally for each branch. E.g. consider this dag where A, B,
C, D, E, F are the selected commits, and a, b, c, e are a chunk
of simplified history that will not receive bitmaps.
A---a---B--b--C--c--D
\
E--e--F
We start by building the bitmap for A, using A as the root for a
revision walk and marking all the objects that are reachable
until the walk is over. Once this bitmap is stored, we reuse the
bitmap walker to perform the walk for B, assuming that once we
reach A again, the walk will be terminated because A has already
been SEEN on the previous walk.
This process is repeated for C, and D, but when we try to
generate the bitmaps for E, we can reuse neither the current walk
nor the bitmap we have generated so far.
What we do now is resetting both the walk and clearing the
bitmap, and performing the walk from scratch using E as the
origin. This new walk, however, does not need to be completed.
Once we hit B, we can lookup the bitmap we have already stored
for that commit and OR it with the existing bitmap we've composed
so far, allowing us to limit the walk early.
After all the bitmaps have been generated, another iteration
through the list of commits is performed to find the best XOR
offsets for compression before writing them to disk. Because of
the incremental nature of these bitmaps, XORing one of them with
its predecesor results in a minimal "bitmap delta" most of the
time. We can write this delta to the on-disk bitmap index, and
then re-compose the original bitmaps by XORing them again when
loaded.
This is a phase very similar to pack-object's `find_delta` (using
bitmaps instead of objects, of course), except the heuristics
have been greatly simplified: we only check the 10 bitmaps before
any given one to find best compressing one. This gives good
results in practice, because there is locality in the ordering of
the objects (and therefore bitmaps) in the packfile.
6. `bitmap_writer_finish`: the last step in the process is
serializing to disk all the bitmap data that has been generated
in the two previous steps.
The bitmap is written to a tmp file and then moved atomically to
its final destination, using the same process as
`pack-write.c:write_idx_file`.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:16 +00:00
|
|
|
|
pack-bitmap.c: propagate namehash values from existing bitmaps
When an old bitmap exists while writing a new one, we load it and build
a "reposition" table which maps bit positions of objects from the old
bitmap to their respective positions in the new bitmap. This can help
when we encounter a commit which was selected in both the old and new
bitmap, since we only need to permute its bit (not recompute it from
scratch).
We do not, however, repurpose existing namehash values in the case of
the hash-cache extension. There has been thus far no good reason to do
so, since all of the namehash values for objects in the new bitmap would
be populated during the traversal that was just performed by
pack-objects when generating single-pack reachability bitmaps.
But this isn't the case for multi-pack bitmaps, which are written via
`git multi-pack-index write --bitmap` and do not perform any traversal.
In this case all namehash values are set to zero, but we don't even
bother to check the `pack.writeBitmapHashcache` option anyway, so it
fails to matter.
There are two approaches we could take to fill in non-zero hash-cache
values:
- have either the multi-pack-index builtin run its own
traversal to attempt to fill in some values, or let a hypothetical
caller (like `pack-objects` when `repack` eventually drives the
`multi-pack-index` builtin) fill in the values they found during
their traversal
- or copy any existing namehash values that were stored in an
existing bitmap to their corresponding positions in the new bitmap
In a system where a repository is generally repacked with `git repack
--geometric=<d>` and occasionally repacked with `git repack -a`, the
hash-cache coverage will tend towards all objects.
Since populating the hash-cache is additive (i.e., doing so only helps
our delta search), any intermediate lack of full coverage is just fine.
So let's start by just propagating any values from the existing
hash-cache if we see one.
The next patch will respect the `pack.writeBitmapHashcache` option while
writing MIDX bitmaps, and then test this new behavior.
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-09-14 22:06:04 +00:00
|
|
|
if (oe) {
|
2018-04-14 15:35:04 +00:00
|
|
|
reposition[i] = oe_in_pack_pos(mapping, oe) + 1;
|
pack-bitmap.c: propagate namehash values from existing bitmaps
When an old bitmap exists while writing a new one, we load it and build
a "reposition" table which maps bit positions of objects from the old
bitmap to their respective positions in the new bitmap. This can help
when we encounter a commit which was selected in both the old and new
bitmap, since we only need to permute its bit (not recompute it from
scratch).
We do not, however, repurpose existing namehash values in the case of
the hash-cache extension. There has been thus far no good reason to do
so, since all of the namehash values for objects in the new bitmap would
be populated during the traversal that was just performed by
pack-objects when generating single-pack reachability bitmaps.
But this isn't the case for multi-pack bitmaps, which are written via
`git multi-pack-index write --bitmap` and do not perform any traversal.
In this case all namehash values are set to zero, but we don't even
bother to check the `pack.writeBitmapHashcache` option anyway, so it
fails to matter.
There are two approaches we could take to fill in non-zero hash-cache
values:
- have either the multi-pack-index builtin run its own
traversal to attempt to fill in some values, or let a hypothetical
caller (like `pack-objects` when `repack` eventually drives the
`multi-pack-index` builtin) fill in the values they found during
their traversal
- or copy any existing namehash values that were stored in an
existing bitmap to their corresponding positions in the new bitmap
In a system where a repository is generally repacked with `git repack
--geometric=<d>` and occasionally repacked with `git repack -a`, the
hash-cache coverage will tend towards all objects.
Since populating the hash-cache is additive (i.e., doing so only helps
our delta search), any intermediate lack of full coverage is just fine.
So let's start by just propagating any values from the existing
hash-cache if we see one.
The next patch will respect the `pack.writeBitmapHashcache` option while
writing MIDX bitmaps, and then test this new behavior.
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-09-14 22:06:04 +00:00
|
|
|
if (bitmap_git->hashes && !oe->hash)
|
|
|
|
oe->hash = get_be32(bitmap_git->hashes + index_pos);
|
|
|
|
}
|
pack-objects: implement bitmap writing
This commit extends more the functionality of `pack-objects` by allowing
it to write out a `.bitmap` index next to any written packs, together
with the `.idx` index that currently gets written.
If bitmap writing is enabled for a given repository (either by calling
`pack-objects` with the `--write-bitmap-index` flag or by having
`pack.writebitmaps` set to `true` in the config) and pack-objects is
writing a packfile that would normally be indexed (i.e. not piping to
stdout), we will attempt to write the corresponding bitmap index for the
packfile.
Bitmap index writing happens after the packfile and its index has been
successfully written to disk (`finish_tmp_packfile`). The process is
performed in several steps:
1. `bitmap_writer_set_checksum`: this call stores the partial
checksum for the packfile being written; the checksum will be
written in the resulting bitmap index to verify its integrity
2. `bitmap_writer_build_type_index`: this call uses the array of
`struct object_entry` that has just been sorted when writing out
the actual packfile index to disk to generate 4 type-index bitmaps
(one for each object type).
These bitmaps have their nth bit set if the given object is of
the bitmap's type. E.g. the nth bit of the Commits bitmap will be
1 if the nth object in the packfile index is a commit.
This is a very cheap operation because the bitmap writing code has
access to the metadata stored in the `struct object_entry` array,
and hence the real type for each object in the packfile.
3. `bitmap_writer_reuse_bitmaps`: if there exists an existing bitmap
index for one of the packfiles we're trying to repack, this call
will efficiently rebuild the existing bitmaps so they can be
reused on the new index. All the existing bitmaps will be stored
in a `reuse` hash table, and the commit selection phase will
prioritize these when selecting, as they can be written directly
to the new index without having to perform a revision walk to
fill the bitmap. This can greatly speed up the repack of a
repository that already has bitmaps.
4. `bitmap_writer_select_commits`: if bitmap writing is enabled for
a given `pack-objects` run, the sequence of commits generated
during the Counting Objects phase will be stored in an array.
We then use that array to build up the list of selected commits.
Writing a bitmap in the index for each object in the repository
would be cost-prohibitive, so we use a simple heuristic to pick
the commits that will be indexed with bitmaps.
The current heuristics are a simplified version of JGit's
original implementation. We select a higher density of commits
depending on their age: the 100 most recent commits are always
selected, after that we pick 1 commit of each 100, and the gap
increases as the commits grow older. On top of that, we make sure
that every single branch that has not been merged (all the tips
that would be required from a clone) gets their own bitmap, and
when selecting commits between a gap, we tend to prioritize the
commit with the most parents.
Do note that there is no right/wrong way to perform commit
selection; different selection algorithms will result in
different commits being selected, but there's no such thing as
"missing a commit". The bitmap walker algorithm implemented in
`prepare_bitmap_walk` is able to adapt to missing bitmaps by
performing manual walks that complete the bitmap: the ideal
selection algorithm, however, would select the commits that are
more likely to be used as roots for a walk in the future (e.g.
the tips of each branch, and so on) to ensure a bitmap for them
is always available.
5. `bitmap_writer_build`: this is the computationally expensive part
of bitmap generation. Based on the list of commits that were
selected in the previous step, we perform several incremental
walks to generate the bitmap for each commit.
The walks begin from the oldest commit, and are built up
incrementally for each branch. E.g. consider this dag where A, B,
C, D, E, F are the selected commits, and a, b, c, e are a chunk
of simplified history that will not receive bitmaps.
A---a---B--b--C--c--D
\
E--e--F
We start by building the bitmap for A, using A as the root for a
revision walk and marking all the objects that are reachable
until the walk is over. Once this bitmap is stored, we reuse the
bitmap walker to perform the walk for B, assuming that once we
reach A again, the walk will be terminated because A has already
been SEEN on the previous walk.
This process is repeated for C, and D, but when we try to
generate the bitmaps for E, we can reuse neither the current walk
nor the bitmap we have generated so far.
What we do now is resetting both the walk and clearing the
bitmap, and performing the walk from scratch using E as the
origin. This new walk, however, does not need to be completed.
Once we hit B, we can lookup the bitmap we have already stored
for that commit and OR it with the existing bitmap we've composed
so far, allowing us to limit the walk early.
After all the bitmaps have been generated, another iteration
through the list of commits is performed to find the best XOR
offsets for compression before writing them to disk. Because of
the incremental nature of these bitmaps, XORing one of them with
its predecesor results in a minimal "bitmap delta" most of the
time. We can write this delta to the on-disk bitmap index, and
then re-compose the original bitmaps by XORing them again when
loaded.
This is a phase very similar to pack-object's `find_delta` (using
bitmaps instead of objects, of course), except the heuristics
have been greatly simplified: we only check the 10 bitmaps before
any given one to find best compressing one. This gives good
results in practice, because there is locality in the ordering of
the objects (and therefore bitmaps) in the packfile.
6. `bitmap_writer_finish`: the last step in the process is
serializing to disk all the bitmap data that has been generated
in the two previous steps.
The bitmap is written to a tmp file and then moved atomically to
its final destination, using the same process as
`pack-write.c:write_idx_file`.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:16 +00:00
|
|
|
}
|
|
|
|
|
pack-bitmap-write: ignore BITMAP_FLAG_REUSE
The on-disk bitmap format has a flag to mark a bitmap to be "reused".
This is a rather curious feature, and works like this:
- a run of pack-objects would decide to mark the last 80% of the
bitmaps it generates with the reuse flag
- the next time we generate bitmaps, we'd see those reuse flags from
the last run, and mark those commits as special:
- we'd be more likely to select those commits to get bitmaps in
the new output
- when generating the bitmap for a selected commit, we'd reuse the
old bitmap as-is (rearranging the bits to match the new pack, of
course)
However, neither of these behaviors particularly makes sense.
Just because a commit happened to be bitmapped last time does not make
it a good candidate for having a bitmap this time. In particular, we may
choose bitmaps based on how recent they are in history, or whether a ref
tip points to them, and those things will change. We're better off
re-considering fresh which commits are good candidates.
Reusing the existing bitmap _is_ a reasonable thing to do to save
computation. But only reusing exact bitmaps is a weak form of this. If
we have an old bitmap for A and now want a new bitmap for its child, we
should be able to compute that only by looking at trees and that are new
to the child. But this code would consider only exact reuse (which is
perhaps why it was eager to select those commits in the first place).
Furthermore, the recent switch to the reverse-edge algorithm for
generating bitmaps dropped this optimization entirely (and yet still
performs better).
So let's do a few cleanups:
- drop the whole "reusing bitmaps" phase of generating bitmaps. It's
not helping anything, and is mostly unused code (or worse, code that
is using CPU but not doing anything useful)
- drop the use of the on-disk reuse flag to select commits to bitmap
- stop setting the on-disk reuse flag in bitmaps we generate (since
nothing respects it anymore)
We will keep a few innards of the reuse code, which will help us
implement a more capable version of the "reuse" optimization:
- simplify rebuild_existing_bitmaps() into a function that only builds
the mapping of bits between the old and new orders, but doesn't
actually convert any bitmaps
- make rebuild_bitmap() public; we'll call it lazily to convert bitmaps
as we traverse (using the mapping created above)
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-12-08 22:04:34 +00:00
|
|
|
return reposition;
|
pack-objects: implement bitmap writing
This commit extends more the functionality of `pack-objects` by allowing
it to write out a `.bitmap` index next to any written packs, together
with the `.idx` index that currently gets written.
If bitmap writing is enabled for a given repository (either by calling
`pack-objects` with the `--write-bitmap-index` flag or by having
`pack.writebitmaps` set to `true` in the config) and pack-objects is
writing a packfile that would normally be indexed (i.e. not piping to
stdout), we will attempt to write the corresponding bitmap index for the
packfile.
Bitmap index writing happens after the packfile and its index has been
successfully written to disk (`finish_tmp_packfile`). The process is
performed in several steps:
1. `bitmap_writer_set_checksum`: this call stores the partial
checksum for the packfile being written; the checksum will be
written in the resulting bitmap index to verify its integrity
2. `bitmap_writer_build_type_index`: this call uses the array of
`struct object_entry` that has just been sorted when writing out
the actual packfile index to disk to generate 4 type-index bitmaps
(one for each object type).
These bitmaps have their nth bit set if the given object is of
the bitmap's type. E.g. the nth bit of the Commits bitmap will be
1 if the nth object in the packfile index is a commit.
This is a very cheap operation because the bitmap writing code has
access to the metadata stored in the `struct object_entry` array,
and hence the real type for each object in the packfile.
3. `bitmap_writer_reuse_bitmaps`: if there exists an existing bitmap
index for one of the packfiles we're trying to repack, this call
will efficiently rebuild the existing bitmaps so they can be
reused on the new index. All the existing bitmaps will be stored
in a `reuse` hash table, and the commit selection phase will
prioritize these when selecting, as they can be written directly
to the new index without having to perform a revision walk to
fill the bitmap. This can greatly speed up the repack of a
repository that already has bitmaps.
4. `bitmap_writer_select_commits`: if bitmap writing is enabled for
a given `pack-objects` run, the sequence of commits generated
during the Counting Objects phase will be stored in an array.
We then use that array to build up the list of selected commits.
Writing a bitmap in the index for each object in the repository
would be cost-prohibitive, so we use a simple heuristic to pick
the commits that will be indexed with bitmaps.
The current heuristics are a simplified version of JGit's
original implementation. We select a higher density of commits
depending on their age: the 100 most recent commits are always
selected, after that we pick 1 commit of each 100, and the gap
increases as the commits grow older. On top of that, we make sure
that every single branch that has not been merged (all the tips
that would be required from a clone) gets their own bitmap, and
when selecting commits between a gap, we tend to prioritize the
commit with the most parents.
Do note that there is no right/wrong way to perform commit
selection; different selection algorithms will result in
different commits being selected, but there's no such thing as
"missing a commit". The bitmap walker algorithm implemented in
`prepare_bitmap_walk` is able to adapt to missing bitmaps by
performing manual walks that complete the bitmap: the ideal
selection algorithm, however, would select the commits that are
more likely to be used as roots for a walk in the future (e.g.
the tips of each branch, and so on) to ensure a bitmap for them
is always available.
5. `bitmap_writer_build`: this is the computationally expensive part
of bitmap generation. Based on the list of commits that were
selected in the previous step, we perform several incremental
walks to generate the bitmap for each commit.
The walks begin from the oldest commit, and are built up
incrementally for each branch. E.g. consider this dag where A, B,
C, D, E, F are the selected commits, and a, b, c, e are a chunk
of simplified history that will not receive bitmaps.
A---a---B--b--C--c--D
\
E--e--F
We start by building the bitmap for A, using A as the root for a
revision walk and marking all the objects that are reachable
until the walk is over. Once this bitmap is stored, we reuse the
bitmap walker to perform the walk for B, assuming that once we
reach A again, the walk will be terminated because A has already
been SEEN on the previous walk.
This process is repeated for C, and D, but when we try to
generate the bitmaps for E, we can reuse neither the current walk
nor the bitmap we have generated so far.
What we do now is resetting both the walk and clearing the
bitmap, and performing the walk from scratch using E as the
origin. This new walk, however, does not need to be completed.
Once we hit B, we can lookup the bitmap we have already stored
for that commit and OR it with the existing bitmap we've composed
so far, allowing us to limit the walk early.
After all the bitmaps have been generated, another iteration
through the list of commits is performed to find the best XOR
offsets for compression before writing them to disk. Because of
the incremental nature of these bitmaps, XORing one of them with
its predecesor results in a minimal "bitmap delta" most of the
time. We can write this delta to the on-disk bitmap index, and
then re-compose the original bitmaps by XORing them again when
loaded.
This is a phase very similar to pack-object's `find_delta` (using
bitmaps instead of objects, of course), except the heuristics
have been greatly simplified: we only check the 10 bitmaps before
any given one to find best compressing one. This gives good
results in practice, because there is locality in the ordering of
the objects (and therefore bitmaps) in the packfile.
6. `bitmap_writer_finish`: the last step in the process is
serializing to disk all the bitmap data that has been generated
in the two previous steps.
The bitmap is written to a tmp file and then moved atomically to
its final destination, using the same process as
`pack-write.c:write_idx_file`.
Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-21 14:00:16 +00:00
|
|
|
}
|
2018-06-07 19:04:14 +00:00
|
|
|
|
|
|
|
void free_bitmap_index(struct bitmap_index *b)
|
|
|
|
{
|
|
|
|
if (!b)
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (b->map)
|
|
|
|
munmap(b->map, b->map_size);
|
|
|
|
ewah_pool_free(b->commits);
|
|
|
|
ewah_pool_free(b->trees);
|
|
|
|
ewah_pool_free(b->blobs);
|
|
|
|
ewah_pool_free(b->tags);
|
2019-02-19 00:04:58 +00:00
|
|
|
kh_destroy_oid_map(b->bitmaps);
|
2018-06-07 19:04:14 +00:00
|
|
|
free(b->ext_index.objects);
|
|
|
|
free(b->ext_index.hashes);
|
|
|
|
bitmap_free(b->result);
|
pack-bitmap: save "have" bitmap from walk
When we do a bitmap walk, we save the result, which
represents (WANTs & ~HAVEs); i.e., every object we care
about visiting in our walk. However, we throw away the
haves bitmap, which can sometimes be useful, too. Save it
and provide an access function so code which has performed a
walk can query it.
A few notes on the accessor interface:
- the bitmap code calls these "haves" because it grew out
of the want/have negotiation for fetches. But really,
these are simply the objects that would be flagged
UNINTERESTING in a regular traversal. Let's use that
more universal nomenclature for the external module
interface. We may want to change the internal naming
inside the bitmap code, but that's outside the scope of
this patch.
- it still uses a bare "sha1" rather than "oid". That's
true of all of the bitmap code. And in this particular
instance, our caller in pack-objects is dealing with the
bare sha1 that comes from a packed REF_DELTA (we're
pointing directly to the mmap'd pack on disk). That's
something we'll have to deal with as we transition to a
new hash, but we can wait and see how the caller ends up
being fixed and adjust this interface accordingly.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2018-08-21 19:07:01 +00:00
|
|
|
bitmap_free(b->haves);
|
2021-08-31 20:52:21 +00:00
|
|
|
if (bitmap_is_midx(b)) {
|
|
|
|
/*
|
|
|
|
* Multi-pack bitmaps need to have resources associated with
|
|
|
|
* their on-disk reverse indexes unmapped so that stale .rev and
|
|
|
|
* .bitmap files can be removed.
|
|
|
|
*
|
|
|
|
* Unlike pack-based bitmaps, multi-pack bitmaps can be read and
|
|
|
|
* written in the same 'git multi-pack-index write --bitmap'
|
|
|
|
* process. Close resources so they can be removed safely on
|
|
|
|
* platforms like Windows.
|
|
|
|
*/
|
|
|
|
close_midx_revindex(b->midx);
|
|
|
|
}
|
2018-06-07 19:04:14 +00:00
|
|
|
free(b);
|
|
|
|
}
|
pack-bitmap: save "have" bitmap from walk
When we do a bitmap walk, we save the result, which
represents (WANTs & ~HAVEs); i.e., every object we care
about visiting in our walk. However, we throw away the
haves bitmap, which can sometimes be useful, too. Save it
and provide an access function so code which has performed a
walk can query it.
A few notes on the accessor interface:
- the bitmap code calls these "haves" because it grew out
of the want/have negotiation for fetches. But really,
these are simply the objects that would be flagged
UNINTERESTING in a regular traversal. Let's use that
more universal nomenclature for the external module
interface. We may want to change the internal naming
inside the bitmap code, but that's outside the scope of
this patch.
- it still uses a bare "sha1" rather than "oid". That's
true of all of the bitmap code. And in this particular
instance, our caller in pack-objects is dealing with the
bare sha1 that comes from a packed REF_DELTA (we're
pointing directly to the mmap'd pack on disk). That's
something we'll have to deal with as we transition to a
new hash, but we can wait and see how the caller ends up
being fixed and adjust this interface accordingly.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2018-08-21 19:07:01 +00:00
|
|
|
|
2019-02-19 00:04:58 +00:00
|
|
|
int bitmap_has_oid_in_uninteresting(struct bitmap_index *bitmap_git,
|
|
|
|
const struct object_id *oid)
|
pack-bitmap: save "have" bitmap from walk
When we do a bitmap walk, we save the result, which
represents (WANTs & ~HAVEs); i.e., every object we care
about visiting in our walk. However, we throw away the
haves bitmap, which can sometimes be useful, too. Save it
and provide an access function so code which has performed a
walk can query it.
A few notes on the accessor interface:
- the bitmap code calls these "haves" because it grew out
of the want/have negotiation for fetches. But really,
these are simply the objects that would be flagged
UNINTERESTING in a regular traversal. Let's use that
more universal nomenclature for the external module
interface. We may want to change the internal naming
inside the bitmap code, but that's outside the scope of
this patch.
- it still uses a bare "sha1" rather than "oid". That's
true of all of the bitmap code. And in this particular
instance, our caller in pack-objects is dealing with the
bare sha1 that comes from a packed REF_DELTA (we're
pointing directly to the mmap'd pack on disk). That's
something we'll have to deal with as we transition to a
new hash, but we can wait and see how the caller ends up
being fixed and adjust this interface accordingly.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2018-08-21 19:07:01 +00:00
|
|
|
{
|
2019-12-18 11:25:41 +00:00
|
|
|
return bitmap_git &&
|
|
|
|
bitmap_walk_contains(bitmap_git, bitmap_git->haves, oid);
|
pack-bitmap: save "have" bitmap from walk
When we do a bitmap walk, we save the result, which
represents (WANTs & ~HAVEs); i.e., every object we care
about visiting in our walk. However, we throw away the
haves bitmap, which can sometimes be useful, too. Save it
and provide an access function so code which has performed a
walk can query it.
A few notes on the accessor interface:
- the bitmap code calls these "haves" because it grew out
of the want/have negotiation for fetches. But really,
these are simply the objects that would be flagged
UNINTERESTING in a regular traversal. Let's use that
more universal nomenclature for the external module
interface. We may want to change the internal naming
inside the bitmap code, but that's outside the scope of
this patch.
- it still uses a bare "sha1" rather than "oid". That's
true of all of the bitmap code. And in this particular
instance, our caller in pack-objects is dealing with the
bare sha1 that comes from a packed REF_DELTA (we're
pointing directly to the mmap'd pack on disk). That's
something we'll have to deal with as we transition to a
new hash, but we can wait and see how the caller ends up
being fixed and adjust this interface accordingly.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2018-08-21 19:07:01 +00:00
|
|
|
}
|
rev-list: add --disk-usage option for calculating disk usage
It can sometimes be useful to see which refs are contributing to the
overall repository size (e.g., does some branch have a bunch of objects
not found elsewhere in history, which indicates that deleting it would
shrink the size of a clone).
You can find that out by generating a list of objects, getting their
sizes from cat-file, and then summing them, like:
git rev-list --objects --no-object-names main..branch
git cat-file --batch-check='%(objectsize:disk)' |
perl -lne '$total += $_; END { print $total }'
Though note that the caveats from git-cat-file(1) apply here. We "blame"
base objects more than their deltas, even though the relationship could
easily be flipped. Still, it can be a useful rough measure.
But one problem is that it's slow to run. Teaching rev-list to sum up
the sizes can be much faster for two reasons:
1. It skips all of the piping of object names and sizes.
2. If bitmaps are in use, for objects that are in the
bitmapped packfile we can skip the oid_object_info()
lookup entirely, and just ask the revindex for the
on-disk size.
This patch implements a --disk-usage option which produces the same
answer in a fraction of the time. Here are some timings using a clone of
torvalds/linux:
[rev-list piped to cat-file, no bitmaps]
$ time git rev-list --objects --no-object-names --all |
git cat-file --buffer --batch-check='%(objectsize:disk)' |
perl -lne '$total += $_; END { print $total }'
1459938510
real 0m29.635s
user 0m38.003s
sys 0m1.093s
[internal, no bitmaps]
$ time git rev-list --disk-usage --objects --all
1459938510
real 0m31.262s
user 0m30.885s
sys 0m0.376s
Even though the wall-clock time is slightly worse due to parallelism,
notice the CPU savings between the two. We saved 21% of the CPU just by
avoiding the pipes.
But the real win is with bitmaps. If we use them without the new option:
[rev-list piped to cat-file, bitmaps]
$ time git rev-list --objects --no-object-names --all --use-bitmap-index |
git cat-file --batch-check='%(objectsize:disk)' |
perl -lne '$total += $_; END { print $total }'
1459938510
real 0m6.244s
user 0m8.452s
sys 0m0.311s
then we're faster to generate the list of objects, but we still spend a
lot of time piping and looking things up. But if we do both together:
[internal, bitmaps]
$ time git rev-list --disk-usage --objects --all --use-bitmap-index
1459938510
real 0m0.219s
user 0m0.169s
sys 0m0.049s
then we get the same answer much faster.
For "--all", that answer will correspond closely to "du objects/pack",
of course. But we're actually checking reachability here, so we're still
fast when we ask for more interesting things:
$ time git rev-list --disk-usage --use-bitmap-index v5.0..v5.10
374798628
real 0m0.429s
user 0m0.356s
sys 0m0.072s
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-02-09 10:53:50 +00:00
|
|
|
|
|
|
|
static off_t get_disk_usage_for_type(struct bitmap_index *bitmap_git,
|
|
|
|
enum object_type object_type)
|
|
|
|
{
|
|
|
|
struct bitmap *result = bitmap_git->result;
|
|
|
|
off_t total = 0;
|
|
|
|
struct ewah_iterator it;
|
|
|
|
eword_t filter;
|
|
|
|
size_t i;
|
|
|
|
|
|
|
|
init_type_iterator(&it, bitmap_git, object_type);
|
|
|
|
for (i = 0; i < result->word_alloc &&
|
|
|
|
ewah_iterator_next(&filter, &it); i++) {
|
|
|
|
eword_t word = result->words[i] & filter;
|
|
|
|
size_t base = (i * BITS_IN_EWORD);
|
|
|
|
unsigned offset;
|
|
|
|
|
|
|
|
if (!word)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
for (offset = 0; offset < BITS_IN_EWORD; offset++) {
|
|
|
|
if ((word >> offset) == 0)
|
|
|
|
break;
|
|
|
|
|
|
|
|
offset += ewah_bit_ctz64(word >> offset);
|
2021-08-31 20:52:21 +00:00
|
|
|
|
|
|
|
if (bitmap_is_midx(bitmap_git)) {
|
|
|
|
uint32_t pack_pos;
|
|
|
|
uint32_t midx_pos = pack_pos_to_midx(bitmap_git->midx, base + offset);
|
|
|
|
off_t offset = nth_midxed_offset(bitmap_git->midx, midx_pos);
|
|
|
|
|
|
|
|
uint32_t pack_id = nth_midxed_pack_int_id(bitmap_git->midx, midx_pos);
|
|
|
|
struct packed_git *pack = bitmap_git->midx->packs[pack_id];
|
|
|
|
|
|
|
|
if (offset_to_pack_pos(pack, offset, &pack_pos) < 0) {
|
|
|
|
struct object_id oid;
|
|
|
|
nth_midxed_object_oid(&oid, bitmap_git->midx, midx_pos);
|
|
|
|
|
|
|
|
die(_("could not find %s in pack %s at offset %"PRIuMAX),
|
|
|
|
oid_to_hex(&oid),
|
|
|
|
pack->pack_name,
|
|
|
|
(uintmax_t)offset);
|
|
|
|
}
|
|
|
|
|
|
|
|
total += pack_pos_to_offset(pack, pack_pos + 1) - offset;
|
|
|
|
} else {
|
|
|
|
size_t pos = base + offset;
|
|
|
|
total += pack_pos_to_offset(bitmap_git->pack, pos + 1) -
|
|
|
|
pack_pos_to_offset(bitmap_git->pack, pos);
|
|
|
|
}
|
rev-list: add --disk-usage option for calculating disk usage
It can sometimes be useful to see which refs are contributing to the
overall repository size (e.g., does some branch have a bunch of objects
not found elsewhere in history, which indicates that deleting it would
shrink the size of a clone).
You can find that out by generating a list of objects, getting their
sizes from cat-file, and then summing them, like:
git rev-list --objects --no-object-names main..branch
git cat-file --batch-check='%(objectsize:disk)' |
perl -lne '$total += $_; END { print $total }'
Though note that the caveats from git-cat-file(1) apply here. We "blame"
base objects more than their deltas, even though the relationship could
easily be flipped. Still, it can be a useful rough measure.
But one problem is that it's slow to run. Teaching rev-list to sum up
the sizes can be much faster for two reasons:
1. It skips all of the piping of object names and sizes.
2. If bitmaps are in use, for objects that are in the
bitmapped packfile we can skip the oid_object_info()
lookup entirely, and just ask the revindex for the
on-disk size.
This patch implements a --disk-usage option which produces the same
answer in a fraction of the time. Here are some timings using a clone of
torvalds/linux:
[rev-list piped to cat-file, no bitmaps]
$ time git rev-list --objects --no-object-names --all |
git cat-file --buffer --batch-check='%(objectsize:disk)' |
perl -lne '$total += $_; END { print $total }'
1459938510
real 0m29.635s
user 0m38.003s
sys 0m1.093s
[internal, no bitmaps]
$ time git rev-list --disk-usage --objects --all
1459938510
real 0m31.262s
user 0m30.885s
sys 0m0.376s
Even though the wall-clock time is slightly worse due to parallelism,
notice the CPU savings between the two. We saved 21% of the CPU just by
avoiding the pipes.
But the real win is with bitmaps. If we use them without the new option:
[rev-list piped to cat-file, bitmaps]
$ time git rev-list --objects --no-object-names --all --use-bitmap-index |
git cat-file --batch-check='%(objectsize:disk)' |
perl -lne '$total += $_; END { print $total }'
1459938510
real 0m6.244s
user 0m8.452s
sys 0m0.311s
then we're faster to generate the list of objects, but we still spend a
lot of time piping and looking things up. But if we do both together:
[internal, bitmaps]
$ time git rev-list --disk-usage --objects --all --use-bitmap-index
1459938510
real 0m0.219s
user 0m0.169s
sys 0m0.049s
then we get the same answer much faster.
For "--all", that answer will correspond closely to "du objects/pack",
of course. But we're actually checking reachability here, so we're still
fast when we ask for more interesting things:
$ time git rev-list --disk-usage --use-bitmap-index v5.0..v5.10
374798628
real 0m0.429s
user 0m0.356s
sys 0m0.072s
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-02-09 10:53:50 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return total;
|
|
|
|
}
|
|
|
|
|
|
|
|
static off_t get_disk_usage_for_extended(struct bitmap_index *bitmap_git)
|
|
|
|
{
|
|
|
|
struct bitmap *result = bitmap_git->result;
|
|
|
|
struct eindex *eindex = &bitmap_git->ext_index;
|
|
|
|
off_t total = 0;
|
|
|
|
struct object_info oi = OBJECT_INFO_INIT;
|
|
|
|
off_t object_size;
|
|
|
|
size_t i;
|
|
|
|
|
|
|
|
oi.disk_sizep = &object_size;
|
|
|
|
|
|
|
|
for (i = 0; i < eindex->count; i++) {
|
|
|
|
struct object *obj = eindex->objects[i];
|
|
|
|
|
2021-08-31 20:52:12 +00:00
|
|
|
if (!bitmap_get(result, bitmap_num_objects(bitmap_git) + i))
|
rev-list: add --disk-usage option for calculating disk usage
It can sometimes be useful to see which refs are contributing to the
overall repository size (e.g., does some branch have a bunch of objects
not found elsewhere in history, which indicates that deleting it would
shrink the size of a clone).
You can find that out by generating a list of objects, getting their
sizes from cat-file, and then summing them, like:
git rev-list --objects --no-object-names main..branch
git cat-file --batch-check='%(objectsize:disk)' |
perl -lne '$total += $_; END { print $total }'
Though note that the caveats from git-cat-file(1) apply here. We "blame"
base objects more than their deltas, even though the relationship could
easily be flipped. Still, it can be a useful rough measure.
But one problem is that it's slow to run. Teaching rev-list to sum up
the sizes can be much faster for two reasons:
1. It skips all of the piping of object names and sizes.
2. If bitmaps are in use, for objects that are in the
bitmapped packfile we can skip the oid_object_info()
lookup entirely, and just ask the revindex for the
on-disk size.
This patch implements a --disk-usage option which produces the same
answer in a fraction of the time. Here are some timings using a clone of
torvalds/linux:
[rev-list piped to cat-file, no bitmaps]
$ time git rev-list --objects --no-object-names --all |
git cat-file --buffer --batch-check='%(objectsize:disk)' |
perl -lne '$total += $_; END { print $total }'
1459938510
real 0m29.635s
user 0m38.003s
sys 0m1.093s
[internal, no bitmaps]
$ time git rev-list --disk-usage --objects --all
1459938510
real 0m31.262s
user 0m30.885s
sys 0m0.376s
Even though the wall-clock time is slightly worse due to parallelism,
notice the CPU savings between the two. We saved 21% of the CPU just by
avoiding the pipes.
But the real win is with bitmaps. If we use them without the new option:
[rev-list piped to cat-file, bitmaps]
$ time git rev-list --objects --no-object-names --all --use-bitmap-index |
git cat-file --batch-check='%(objectsize:disk)' |
perl -lne '$total += $_; END { print $total }'
1459938510
real 0m6.244s
user 0m8.452s
sys 0m0.311s
then we're faster to generate the list of objects, but we still spend a
lot of time piping and looking things up. But if we do both together:
[internal, bitmaps]
$ time git rev-list --disk-usage --objects --all --use-bitmap-index
1459938510
real 0m0.219s
user 0m0.169s
sys 0m0.049s
then we get the same answer much faster.
For "--all", that answer will correspond closely to "du objects/pack",
of course. But we're actually checking reachability here, so we're still
fast when we ask for more interesting things:
$ time git rev-list --disk-usage --use-bitmap-index v5.0..v5.10
374798628
real 0m0.429s
user 0m0.356s
sys 0m0.072s
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-02-09 10:53:50 +00:00
|
|
|
continue;
|
|
|
|
|
|
|
|
if (oid_object_info_extended(the_repository, &obj->oid, &oi, 0) < 0)
|
|
|
|
die(_("unable to get disk usage of %s"),
|
|
|
|
oid_to_hex(&obj->oid));
|
|
|
|
|
|
|
|
total += object_size;
|
|
|
|
}
|
|
|
|
return total;
|
|
|
|
}
|
|
|
|
|
|
|
|
off_t get_disk_usage_from_bitmap(struct bitmap_index *bitmap_git,
|
|
|
|
struct rev_info *revs)
|
|
|
|
{
|
|
|
|
off_t total = 0;
|
|
|
|
|
|
|
|
total += get_disk_usage_for_type(bitmap_git, OBJ_COMMIT);
|
|
|
|
if (revs->tree_objects)
|
|
|
|
total += get_disk_usage_for_type(bitmap_git, OBJ_TREE);
|
|
|
|
if (revs->blob_objects)
|
|
|
|
total += get_disk_usage_for_type(bitmap_git, OBJ_BLOB);
|
|
|
|
if (revs->tag_objects)
|
|
|
|
total += get_disk_usage_for_type(bitmap_git, OBJ_TAG);
|
|
|
|
|
|
|
|
total += get_disk_usage_for_extended(bitmap_git);
|
|
|
|
|
|
|
|
return total;
|
|
|
|
}
|
builtin/pack-objects.c: respect 'pack.preferBitmapTips'
When writing a new pack with a bitmap, it is sometimes convenient to
indicate some reference prefixes which should receive priority when
selecting which commits to receive bitmaps.
A truly motivated caller could accomplish this by setting
'pack.islandCore', (since all commits in the core island are similarly
marked as preferred) but this requires callers to opt into using delta
islands, which they may or may not want to do.
Introduce a new multi-valued configuration, 'pack.preferBitmapTips' to
allow callers to specify a list of reference prefixes. All references
which have a prefix contained in 'pack.preferBitmapTips' will mark their
tips as "preferred" in the same way as commits are marked as preferred
for selection by 'pack.islandCore'.
The choice of the verb "prefer" is intentional: marking the NEEDS_BITMAP
flag on an object does *not* guarantee that that object will receive a
bitmap. It merely guarantees that that commit will receive a bitmap over
any *other* commit in the same window by bitmap_writer_select_commits().
The test this patch adds reflects this quirk, too. It only tests that
a commit (which didn't receive bitmaps by default) is selected for
bitmaps after changing the value of 'pack.preferBitmapTips' to include
it. Other commits may lose their bitmaps as a byproduct of how the
selection process works (bitmap_writer_select_commits() ignores the
remainder of a window after seeing a commit with the NEEDS_BITMAP flag).
This configuration will aide in selecting important references for
multi-pack bitmaps, since they do not respect the same pack.islandCore
configuration. (They could, but doing so may be confusing, since it is
packs--not bitmaps--which are influenced by the delta-islands
configuration).
In a fork network repository (one which lists all forks of a given
repository as remotes), for example, it is useful to set
pack.preferBitmapTips to 'refs/remotes/<root>/heads' and
'refs/remotes/<root>/tags', where '<root>' is an opaque identifier
referring to the repository which is at the base of the fork chain.
Suggested-by: Jeff King <peff@peff.net>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-04-01 01:32:14 +00:00
|
|
|
|
2021-08-31 20:52:21 +00:00
|
|
|
int bitmap_is_midx(struct bitmap_index *bitmap_git)
|
|
|
|
{
|
|
|
|
return !!bitmap_git->midx;
|
|
|
|
}
|
|
|
|
|
builtin/pack-objects.c: respect 'pack.preferBitmapTips'
When writing a new pack with a bitmap, it is sometimes convenient to
indicate some reference prefixes which should receive priority when
selecting which commits to receive bitmaps.
A truly motivated caller could accomplish this by setting
'pack.islandCore', (since all commits in the core island are similarly
marked as preferred) but this requires callers to opt into using delta
islands, which they may or may not want to do.
Introduce a new multi-valued configuration, 'pack.preferBitmapTips' to
allow callers to specify a list of reference prefixes. All references
which have a prefix contained in 'pack.preferBitmapTips' will mark their
tips as "preferred" in the same way as commits are marked as preferred
for selection by 'pack.islandCore'.
The choice of the verb "prefer" is intentional: marking the NEEDS_BITMAP
flag on an object does *not* guarantee that that object will receive a
bitmap. It merely guarantees that that commit will receive a bitmap over
any *other* commit in the same window by bitmap_writer_select_commits().
The test this patch adds reflects this quirk, too. It only tests that
a commit (which didn't receive bitmaps by default) is selected for
bitmaps after changing the value of 'pack.preferBitmapTips' to include
it. Other commits may lose their bitmaps as a byproduct of how the
selection process works (bitmap_writer_select_commits() ignores the
remainder of a window after seeing a commit with the NEEDS_BITMAP flag).
This configuration will aide in selecting important references for
multi-pack bitmaps, since they do not respect the same pack.islandCore
configuration. (They could, but doing so may be confusing, since it is
packs--not bitmaps--which are influenced by the delta-islands
configuration).
In a fork network repository (one which lists all forks of a given
repository as remotes), for example, it is useful to set
pack.preferBitmapTips to 'refs/remotes/<root>/heads' and
'refs/remotes/<root>/tags', where '<root>' is an opaque identifier
referring to the repository which is at the base of the fork chain.
Suggested-by: Jeff King <peff@peff.net>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-04-01 01:32:14 +00:00
|
|
|
const struct string_list *bitmap_preferred_tips(struct repository *r)
|
|
|
|
{
|
|
|
|
return repo_config_get_value_multi(r, "pack.preferbitmaptips");
|
|
|
|
}
|
2021-08-31 20:52:16 +00:00
|
|
|
|
|
|
|
int bitmap_is_preferred_refname(struct repository *r, const char *refname)
|
|
|
|
{
|
|
|
|
const struct string_list *preferred_tips = bitmap_preferred_tips(r);
|
|
|
|
struct string_list_item *item;
|
|
|
|
|
|
|
|
if (!preferred_tips)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
for_each_string_list_item(item, preferred_tips) {
|
|
|
|
if (starts_with(refname, item->string))
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|