git/t/t7415-submodule-names.sh

195 lines
5.2 KiB
Bash
Raw Normal View History

submodule-config: verify submodule names as paths Submodule "names" come from the untrusted .gitmodules file, but we blindly append them to $GIT_DIR/modules to create our on-disk repo paths. This means you can do bad things by putting "../" into the name (among other things). Let's sanity-check these names to avoid building a path that can be exploited. There are two main decisions: 1. What should the allowed syntax be? It's tempting to reuse verify_path(), since submodule names typically come from in-repo paths. But there are two reasons not to: a. It's technically more strict than what we need, as we really care only about breaking out of the $GIT_DIR/modules/ hierarchy. E.g., having a submodule named "foo/.git" isn't actually dangerous, and it's possible that somebody has manually given such a funny name. b. Since we'll eventually use this checking logic in fsck to prevent downstream repositories, it should be consistent across platforms. Because verify_path() relies on is_dir_sep(), it wouldn't block "foo\..\bar" on a non-Windows machine. 2. Where should we enforce it? These days most of the .gitmodules reads go through submodule-config.c, so I've put it there in the reading step. That should cover all of the C code. We also construct the name for "git submodule add" inside the git-submodule.sh script. This is probably not a big deal for security since the name is coming from the user anyway, but it would be polite to remind them if the name they pick is invalid (and we need to expose the name-checker to the shell anyway for our test scripts). This patch issues a warning when reading .gitmodules and just ignores the related config entry completely. This will generally end up producing a sensible error, as it works the same as a .gitmodules file which is missing a submodule entry (so "submodule update" will barf, but "git clone --recurse-submodules" will print an error but not abort the clone. There is one minor oddity, which is that we print the warning once per malformed config key (since that's how the config subsystem gives us the entries). So in the new test, for example, the user would see three warnings. That's OK, since the intent is that this case should never come up outside of malicious repositories (and then it might even benefit the user to see the message multiple times). Credit for finding this vulnerability and the proof of concept from which the test script was adapted goes to Etienne Stalmans. Signed-off-by: Jeff King <peff@peff.net>
2018-04-30 07:25:25 +00:00
#!/bin/sh
test_description='check handling of .. in submodule names
Exercise the name-checking function on a variety of names, and then give a
real-world setup that confirms we catch this in practice.
'
. ./test-lib.sh
index-pack: check .gitmodules files with --strict Now that the internal fsck code has all of the plumbing we need, we can start checking incoming .gitmodules files. Naively, it seems like we would just need to add a call to fsck_finish() after we've processed all of the objects. And that would be enough to cover the initial test included here. But there are two extra bits: 1. We currently don't bother calling fsck_object() at all for blobs, since it has traditionally been a noop. We'd actually catch these blobs in fsck_finish() at the end, but it's more efficient to check them when we already have the object loaded in memory. 2. The second pass done by fsck_finish() needs to access the objects, but we're actually indexing the pack in this process. In theory we could give the fsck code a special callback for accessing the in-pack data, but it's actually quite tricky: a. We don't have an internal efficient index mapping oids to packfile offsets. We only generate it on the fly as part of writing out the .idx file. b. We'd still have to reconstruct deltas, which means we'd basically have to replicate all of the reading logic in packfile.c. Instead, let's avoid running fsck_finish() until after we've written out the .idx file, and then just add it to our internal packed_git list. This does mean that the objects are "in the repository" before we finish our fsck checks. But unpack-objects already exhibits this same behavior, and it's an acceptable tradeoff here for the same reason: the quarantine mechanism means that pushes will be fully protected. In addition to a basic push test in t7415, we add a sneaky pack that reverses the usual object order in the pack, requiring that index-pack access the tree and blob during the "finish" step. This already works for unpack-objects (since it will have written out loose objects), but we'll check it with this sneaky pack for good measure. Signed-off-by: Jeff King <peff@peff.net>
2018-05-04 23:45:01 +00:00
. "$TEST_DIRECTORY"/lib-pack.sh
submodule-config: verify submodule names as paths Submodule "names" come from the untrusted .gitmodules file, but we blindly append them to $GIT_DIR/modules to create our on-disk repo paths. This means you can do bad things by putting "../" into the name (among other things). Let's sanity-check these names to avoid building a path that can be exploited. There are two main decisions: 1. What should the allowed syntax be? It's tempting to reuse verify_path(), since submodule names typically come from in-repo paths. But there are two reasons not to: a. It's technically more strict than what we need, as we really care only about breaking out of the $GIT_DIR/modules/ hierarchy. E.g., having a submodule named "foo/.git" isn't actually dangerous, and it's possible that somebody has manually given such a funny name. b. Since we'll eventually use this checking logic in fsck to prevent downstream repositories, it should be consistent across platforms. Because verify_path() relies on is_dir_sep(), it wouldn't block "foo\..\bar" on a non-Windows machine. 2. Where should we enforce it? These days most of the .gitmodules reads go through submodule-config.c, so I've put it there in the reading step. That should cover all of the C code. We also construct the name for "git submodule add" inside the git-submodule.sh script. This is probably not a big deal for security since the name is coming from the user anyway, but it would be polite to remind them if the name they pick is invalid (and we need to expose the name-checker to the shell anyway for our test scripts). This patch issues a warning when reading .gitmodules and just ignores the related config entry completely. This will generally end up producing a sensible error, as it works the same as a .gitmodules file which is missing a submodule entry (so "submodule update" will barf, but "git clone --recurse-submodules" will print an error but not abort the clone. There is one minor oddity, which is that we print the warning once per malformed config key (since that's how the config subsystem gives us the entries). So in the new test, for example, the user would see three warnings. That's OK, since the intent is that this case should never come up outside of malicious repositories (and then it might even benefit the user to see the message multiple times). Credit for finding this vulnerability and the proof of concept from which the test script was adapted goes to Etienne Stalmans. Signed-off-by: Jeff King <peff@peff.net>
2018-04-30 07:25:25 +00:00
test_expect_success 'check names' '
cat >expect <<-\EOF &&
valid
valid/with/paths
EOF
git submodule--helper check-name >actual <<-\EOF &&
valid
valid/with/paths
../foo
/../foo
..\foo
\..\foo
foo/..
foo/../
foo\..
foo\..\
foo/../bar
EOF
test_cmp expect actual
'
test_expect_success 'create innocent subrepo' '
git init innocent &&
git -C innocent commit --allow-empty -m foo
'
test_expect_success 'submodule add refuses invalid names' '
test_must_fail \
git submodule add --name ../../modules/evil "$PWD/innocent" evil
'
test_expect_success 'add evil submodule' '
git submodule add "$PWD/innocent" evil &&
mkdir modules &&
cp -r .git/modules/evil modules &&
write_script modules/evil/hooks/post-checkout <<-\EOF &&
echo >&2 "RUNNING POST CHECKOUT"
EOF
git config -f .gitmodules submodule.evil.update checkout &&
git config -f .gitmodules --rename-section \
submodule.evil submodule.../../modules/evil &&
git add modules &&
git commit -am evil
'
# This step seems like it shouldn't be necessary, since the payload is
# contained entirely in the evil submodule. But due to the vagaries of the
# submodule code, checking out the evil module will fail unless ".git/modules"
# exists. Adding another submodule (with a name that sorts before "evil") is an
# easy way to make sure this is the case in the victim clone.
test_expect_success 'add other submodule' '
git submodule add "$PWD/innocent" another-module &&
git add another-module &&
git commit -am another
'
test_expect_success 'clone evil superproject' '
git clone --recurse-submodules . victim >output 2>&1 &&
! grep "RUNNING POST CHECKOUT" output
'
test_expect_success 'fsck detects evil superproject' '
test_must_fail git fsck
'
test_expect_success 'transfer.fsckObjects detects evil superproject (unpack)' '
rm -rf dst.git &&
git init --bare dst.git &&
git -C dst.git config transfer.fsckObjects true &&
test_must_fail git push dst.git HEAD
'
index-pack: check .gitmodules files with --strict Now that the internal fsck code has all of the plumbing we need, we can start checking incoming .gitmodules files. Naively, it seems like we would just need to add a call to fsck_finish() after we've processed all of the objects. And that would be enough to cover the initial test included here. But there are two extra bits: 1. We currently don't bother calling fsck_object() at all for blobs, since it has traditionally been a noop. We'd actually catch these blobs in fsck_finish() at the end, but it's more efficient to check them when we already have the object loaded in memory. 2. The second pass done by fsck_finish() needs to access the objects, but we're actually indexing the pack in this process. In theory we could give the fsck code a special callback for accessing the in-pack data, but it's actually quite tricky: a. We don't have an internal efficient index mapping oids to packfile offsets. We only generate it on the fly as part of writing out the .idx file. b. We'd still have to reconstruct deltas, which means we'd basically have to replicate all of the reading logic in packfile.c. Instead, let's avoid running fsck_finish() until after we've written out the .idx file, and then just add it to our internal packed_git list. This does mean that the objects are "in the repository" before we finish our fsck checks. But unpack-objects already exhibits this same behavior, and it's an acceptable tradeoff here for the same reason: the quarantine mechanism means that pushes will be fully protected. In addition to a basic push test in t7415, we add a sneaky pack that reverses the usual object order in the pack, requiring that index-pack access the tree and blob during the "finish" step. This already works for unpack-objects (since it will have written out loose objects), but we'll check it with this sneaky pack for good measure. Signed-off-by: Jeff King <peff@peff.net>
2018-05-04 23:45:01 +00:00
test_expect_success 'transfer.fsckObjects detects evil superproject (index)' '
rm -rf dst.git &&
git init --bare dst.git &&
git -C dst.git config transfer.fsckObjects true &&
git -C dst.git config transfer.unpackLimit 1 &&
test_must_fail git push dst.git HEAD
'
# Normally our packs contain commits followed by trees followed by blobs. This
# reverses the order, which requires backtracking to find the context of a
# blob. We'll start with a fresh gitmodules-only tree to make it simpler.
test_expect_success 'create oddly ordered pack' '
git checkout --orphan odd &&
git rm -rf --cached . &&
git add .gitmodules &&
git commit -m odd &&
{
pack_header 3 &&
pack_obj $(git rev-parse HEAD:.gitmodules) &&
pack_obj $(git rev-parse HEAD^{tree}) &&
pack_obj $(git rev-parse HEAD)
} >odd.pack &&
pack_trailer odd.pack
'
test_expect_success 'transfer.fsckObjects handles odd pack (unpack)' '
rm -rf dst.git &&
git init --bare dst.git &&
test_must_fail git -C dst.git unpack-objects --strict <odd.pack
'
test_expect_success 'transfer.fsckObjects handles odd pack (index)' '
rm -rf dst.git &&
git init --bare dst.git &&
test_must_fail git -C dst.git index-pack --strict --stdin <odd.pack
'
index-pack: handle --strict checks of non-repo packs Commit 73c3f0f704 (index-pack: check .gitmodules files with --strict, 2018-05-04) added a call to add_packed_git(), with the intent that the newly-indexed objects would be available to the process when we run fsck_finish(). But that's not what add_packed_git() does. It only allocates the struct, and you must install_packed_git() on the result. So that call was effectively doing nothing (except leaking a struct). But wait, we passed all of the tests! Does that mean we don't need the call at all? For normal cases, no. When we run "index-pack --stdin" inside a repository, we write the new pack into the object directory. If fsck_finish() needs to access one of the new objects, then our initial lookup will fail to find it, but we'll follow up by running reprepare_packed_git() and looking again. That logic was meant to handle somebody else repacking simultaneously, but it ends up working for us here. But there is a case that does need this, that we were not testing. You can run "git index-pack foo.pack" on any file, even when it is not inside the object directory. Or you may not even be in a repository at all! This case fails without doing the proper install_packed_git() call. We can make this work by adding the install call. Note that we should be prepared to handle add_packed_git() failing. We can just silently ignore this case, though. If fsck_finish() later needs the objects and they're not available, it will complain itself. And if it doesn't (because we were able to resolve the whole fsck in the first pass), then it actually isn't an interesting error at all. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2018-05-31 22:45:31 +00:00
test_expect_success 'index-pack --strict works for non-repo pack' '
rm -rf dst.git &&
git init --bare dst.git &&
cp odd.pack dst.git &&
test_must_fail git -C dst.git index-pack --strict odd.pack 2>output &&
# Make sure we fail due to bad gitmodules content, not because we
# could not read the blob in the first place.
grep gitmodulesName output
'
test_expect_success 'fsck detects symlinked .gitmodules file' '
git init symlink &&
(
cd symlink &&
# Make the tree directly to avoid index restrictions.
#
# Because symlinks store the target as a blob, choose
# a pathname that could be parsed as a .gitmodules file
# to trick naive non-symlink-aware checking.
tricky="[foo]bar=true" &&
content=$(git hash-object -w ../.gitmodules) &&
target=$(printf "$tricky" | git hash-object -w --stdin) &&
{
printf "100644 blob $content\t$tricky\n" &&
printf "120000 blob $target\t.gitmodules\n"
} | git mktree &&
# Check not only that we fail, but that it is due to the
# symlink detector; this grep string comes from the config
# variable name and will not be translated.
test_must_fail git fsck 2>output &&
grep gitmodulesSymlink output
)
'
test_expect_success 'fsck detects non-blob .gitmodules' '
git init non-blob &&
(
cd non-blob &&
# As above, make the funny tree directly to avoid index
# restrictions.
mkdir subdir &&
cp ../.gitmodules subdir/file &&
git add subdir/file &&
git commit -m ok &&
git ls-tree HEAD | sed s/subdir/.gitmodules/ | git mktree &&
test_must_fail git fsck 2>output &&
grep gitmodulesBlob output
)
'
test_expect_success 'fsck detects corrupt .gitmodules' '
git init corrupt &&
(
cd corrupt &&
echo "[broken" >.gitmodules &&
git add .gitmodules &&
git commit -m "broken gitmodules" &&
fsck: downgrade gitmodulesParse default to "info" We added an fsck check in ed8b10f631 (fsck: check .gitmodules content, 2018-05-02) as a defense against the vulnerability from 0383bbb901 (submodule-config: verify submodule names as paths, 2018-04-30). With the idea that up-to-date hosting sites could protect downstream unpatched clients that fetch from them. As part of that defense, we reject any ".gitmodules" entry that is not syntactically valid. The theory is that if we cannot even parse the file, we cannot accurately check it for vulnerabilities. And anybody with a broken .gitmodules file would eventually want to know anyway. But there are a few reasons this is a bad tradeoff in practice: - for this particular vulnerability, the client has to be able to parse the file. So you cannot sneak an attack through using a broken file, assuming the config parsers for the process running fsck and the eventual victim are functionally equivalent. - a broken .gitmodules file is not necessarily a problem. Our fsck check detects .gitmodules in _any_ tree, not just at the root. And the presence of a .gitmodules file does not necessarily mean it will be used; you'd have to also have gitlinks in the tree. The cgit repository, for example, has a file named .gitmodules from a pre-submodule attempt at sharing code, but does not actually have any gitlinks. - when the fsck check is used to reject a push, it's often hard to work around. The pusher may not have full control over the destination repository (e.g., if it's on a hosting server, they may need to contact the hosting site's support). And the broken .gitmodules may be too far back in history for rewriting to be feasible (again, this is an issue for cgit). So we're being unnecessarily restrictive without actually improving the security in a meaningful way. It would be more convenient to downgrade this check to "info", which means we'd still comment on it, but not reject a push. Site admins can already do this via config, but we should ship sensible defaults. There are a few counterpoints to consider in favor of keeping the check as an error: - the first point above assumes that the config parsers for the victim and the fsck process are equivalent. This is pretty true now, but as time goes on will become less so. Hosting sites are likely to upgrade their version of Git, whereas vulnerable clients will be stagnant (if they did upgrade, they'd cease to be vulnerable!). So in theory we may see drift over time between what two config parsers will accept. In practice, this is probably OK. The config format is pretty established at this point and shouldn't change a lot. And the farther we get from the announcement of the vulnerability, the less interesting this extra layer of protection becomes. I.e., it was _most_ valuable on day 0, when everybody's client was still vulnerable and hosting sites could protect people. But as time goes on and people upgrade, the population of vulnerable clients becomes smaller and smaller. - In theory this could protect us from other vulnerabilities in the future. E.g., .gitmodules are the only way for a malicious repository to feed data to the config parser, so this check could similarly protect clients from a future (to-be-found) bug there. But that's trading a hypothetical case for real-world pain today. If we do find such a bug, the hosting site would need to be updated to fix it, too. At which point we could figure out whether it's possible to detect _just_ the malicious case without hurting existing broken-but-not-evil cases. - Until recently, we hadn't made any restrictions on .gitmodules content. So now in tightening that we're hitting cases where certain things used to work, but don't anymore. There's some moderate pain now. But as time goes on, we'll see more (and more varied) cases that will make tightening harder in the future. So there's some argument for putting rules in place _now_, before users grow more cases that violate them. Again, this is trading pain now for hypothetical benefit in the future. And if we try hard in the future to keep our tightening to a minimum (i.e., rejecting true maliciousness without hurting broken-but-not-evil repos), then that reduces even the hypothetical benefit. Considering both sets of arguments, it makes sense to loosen this check for now. Note that we have to tweak the test in t7415 since fsck will no longer consider this a fatal error. But we still check that it reports the warning, and that we don't get the spurious error from the config code. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2018-07-13 19:39:58 +00:00
git fsck 2>output &&
grep gitmodulesParse output &&
test_i18ngrep ! "bad config" output
)
'
submodule-config: verify submodule names as paths Submodule "names" come from the untrusted .gitmodules file, but we blindly append them to $GIT_DIR/modules to create our on-disk repo paths. This means you can do bad things by putting "../" into the name (among other things). Let's sanity-check these names to avoid building a path that can be exploited. There are two main decisions: 1. What should the allowed syntax be? It's tempting to reuse verify_path(), since submodule names typically come from in-repo paths. But there are two reasons not to: a. It's technically more strict than what we need, as we really care only about breaking out of the $GIT_DIR/modules/ hierarchy. E.g., having a submodule named "foo/.git" isn't actually dangerous, and it's possible that somebody has manually given such a funny name. b. Since we'll eventually use this checking logic in fsck to prevent downstream repositories, it should be consistent across platforms. Because verify_path() relies on is_dir_sep(), it wouldn't block "foo\..\bar" on a non-Windows machine. 2. Where should we enforce it? These days most of the .gitmodules reads go through submodule-config.c, so I've put it there in the reading step. That should cover all of the C code. We also construct the name for "git submodule add" inside the git-submodule.sh script. This is probably not a big deal for security since the name is coming from the user anyway, but it would be polite to remind them if the name they pick is invalid (and we need to expose the name-checker to the shell anyway for our test scripts). This patch issues a warning when reading .gitmodules and just ignores the related config entry completely. This will generally end up producing a sensible error, as it works the same as a .gitmodules file which is missing a submodule entry (so "submodule update" will barf, but "git clone --recurse-submodules" will print an error but not abort the clone. There is one minor oddity, which is that we print the warning once per malformed config key (since that's how the config subsystem gives us the entries). So in the new test, for example, the user would see three warnings. That's OK, since the intent is that this case should never come up outside of malicious repositories (and then it might even benefit the user to see the message multiple times). Credit for finding this vulnerability and the proof of concept from which the test script was adapted goes to Etienne Stalmans. Signed-off-by: Jeff King <peff@peff.net>
2018-04-30 07:25:25 +00:00
test_done