flutter/examples/layers/raw/spinning_square.dart
Ian Hickson 449f4a6673
License update (#45373)
* Update project.pbxproj files to say Flutter rather than Chromium

Also, the templates now have an empty organization so that we don't cause people to give their apps a Flutter copyright.

* Update the copyright notice checker to require a standard notice on all files

* Update copyrights on Dart files. (This was a mechanical commit.)

* Fix weird license headers on Dart files that deviate from our conventions; relicense Shrine.

Some were already marked "The Flutter Authors", not clear why. Their
dates have been normalized. Some were missing the blank line after the
license. Some were randomly different in trivial ways for no apparent
reason (e.g. missing the trailing period).

* Clean up the copyrights in non-Dart files. (Manual edits.)

Also, make sure templates don't have copyrights.

* Fix some more ORGANIZATIONNAMEs
2019-11-27 15:04:02 -08:00

60 lines
2.2 KiB
Dart

// Copyright 2014 The Flutter Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// This example shows how to perform a simple animation using the raw interface
// to the engine.
import 'dart:math' as math;
import 'dart:typed_data';
import 'dart:ui' as ui;
void beginFrame(Duration timeStamp) {
// The timeStamp argument to beginFrame indicates the timing information we
// should use to clock our animations. It's important to use timeStamp rather
// than reading the system time because we want all the parts of the system to
// coordinate the timings of their animations. If each component read the
// system clock independently, the animations that we processed later would be
// slightly ahead of the animations we processed earlier.
// PAINT
final ui.Rect paintBounds = ui.Offset.zero & (ui.window.physicalSize / ui.window.devicePixelRatio);
final ui.PictureRecorder recorder = ui.PictureRecorder();
final ui.Canvas canvas = ui.Canvas(recorder, paintBounds);
canvas.translate(paintBounds.width / 2.0, paintBounds.height / 2.0);
// Here we determine the rotation according to the timeStamp given to us by
// the engine.
final double t = timeStamp.inMicroseconds / Duration.microsecondsPerMillisecond / 1800.0;
canvas.rotate(math.pi * (t % 1.0));
canvas.drawRect(const ui.Rect.fromLTRB(-100.0, -100.0, 100.0, 100.0),
ui.Paint()..color = const ui.Color.fromARGB(255, 0, 255, 0));
final ui.Picture picture = recorder.endRecording();
// COMPOSITE
final double devicePixelRatio = ui.window.devicePixelRatio;
final Float64List deviceTransform = Float64List(16)
..[0] = devicePixelRatio
..[5] = devicePixelRatio
..[10] = 1.0
..[15] = 1.0;
final ui.SceneBuilder sceneBuilder = ui.SceneBuilder()
..pushTransform(deviceTransform)
..addPicture(ui.Offset.zero, picture)
..pop();
ui.window.render(sceneBuilder.build());
// After rendering the current frame of the animation, we ask the engine to
// schedule another frame. The engine will call beginFrame again when its time
// to produce the next frame.
ui.window.scheduleFrame();
}
void main() {
ui.window.onBeginFrame = beginFrame;
ui.window.scheduleFrame();
}