deno/cli/tokio_util.rs
2019-06-02 14:23:36 -04:00

157 lines
4.2 KiB
Rust

// Copyright 2018-2019 the Deno authors. All rights reserved. MIT license.
use crate::resources::Resource;
use futures;
use futures::Future;
use futures::Poll;
use std::io;
use std::mem;
use std::net::SocketAddr;
use tokio;
use tokio::net::TcpStream;
use tokio::runtime;
pub fn create_threadpool_runtime() -> tokio::runtime::Runtime {
runtime::Builder::new()
.panic_handler(|err| std::panic::resume_unwind(err))
.build()
.unwrap()
}
pub fn run<F>(future: F)
where
F: Future<Item = (), Error = ()> + Send + 'static,
{
// tokio::runtime::current_thread::run(future)
let rt = create_threadpool_runtime();
rt.block_on_all(future).unwrap();
}
/// THIS IS A HACK AND SHOULD BE AVOIDED.
///
/// This creates a new tokio runtime, with many new threads, to execute the
/// given future. This is useful when we want to block the main runtime to
/// resolve a future without worrying that we'll use up all the threads in the
/// main runtime.
pub fn block_on<F, R, E>(future: F) -> Result<R, E>
where
F: Send + 'static + Future<Item = R, Error = E>,
R: Send + 'static,
E: Send + 'static,
{
use std::sync::mpsc::channel;
use std::thread;
let (sender, receiver) = channel();
// Create a new runtime to evaluate the future asynchronously.
thread::spawn(move || {
let mut rt = create_threadpool_runtime();
let r = rt.block_on(future);
sender.send(r).unwrap();
});
receiver.recv().unwrap()
}
// Set the default executor so we can use tokio::spawn(). It's difficult to
// pass around mut references to the runtime, so using with_default is
// preferable. Ideally Tokio would provide this function.
#[cfg(test)]
pub fn init<F>(f: F)
where
F: FnOnce(),
{
let rt = create_threadpool_runtime();
let mut executor = rt.executor();
let mut enter = tokio_executor::enter().expect("Multiple executors at once");
tokio_executor::with_default(&mut executor, &mut enter, move |_enter| f());
}
#[derive(Debug)]
enum AcceptState {
Pending(Resource),
Empty,
}
/// Simply accepts a connection.
pub fn accept(r: Resource) -> Accept {
Accept {
state: AcceptState::Pending(r),
}
}
/// A future which can be used to easily read available number of bytes to fill
/// a buffer.
///
/// Created by the [`read`] function.
#[derive(Debug)]
pub struct Accept {
state: AcceptState,
}
impl Future for Accept {
type Item = (TcpStream, SocketAddr);
type Error = io::Error;
fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
let (stream, addr) = match self.state {
// Similar to try_ready!, but also track/untrack accept task
// in TcpListener resource.
// In this way, when the listener is closed, the task can be
// notified to error out (instead of stuck forever).
AcceptState::Pending(ref mut r) => match r.poll_accept() {
Ok(futures::prelude::Async::Ready(t)) => {
r.untrack_task();
t
}
Ok(futures::prelude::Async::NotReady) => {
// Would error out if another accept task is being tracked.
r.track_task()?;
return Ok(futures::prelude::Async::NotReady);
}
Err(e) => {
r.untrack_task();
return Err(e);
}
},
AcceptState::Empty => panic!("poll Accept after it's done"),
};
match mem::replace(&mut self.state, AcceptState::Empty) {
AcceptState::Pending(_) => Ok((stream, addr).into()),
AcceptState::Empty => panic!("invalid internal state"),
}
}
}
/// `futures::future::poll_fn` only support `F: FnMut()->Poll<T, E>`
/// However, we require that `F: FnOnce()->Poll<T, E>`.
/// Therefore, we created our version of `poll_fn`.
pub fn poll_fn<T, E, F>(f: F) -> PollFn<F>
where
F: FnOnce() -> Poll<T, E>,
{
PollFn { inner: Some(f) }
}
pub struct PollFn<F> {
inner: Option<F>,
}
impl<T, E, F> Future for PollFn<F>
where
F: FnOnce() -> Poll<T, E>,
{
type Item = T;
type Error = E;
fn poll(&mut self) -> Poll<T, E> {
let f = self.inner.take().expect("Inner fn has been taken.");
f()
}
}
pub fn panic_on_error<I, E, F>(f: F) -> impl Future<Item = I, Error = ()>
where
F: Future<Item = I, Error = E>,
E: std::fmt::Debug,
{
f.map_err(|err| panic!("Future got unexpected error: {:?}", err))
}