// Copyright 2018-2024 the Deno authors. All rights reserved. MIT license. import { assert, assertEquals, assertNotEquals, assertRejects, } from "./test_util.ts"; // https://github.com/denoland/deno/issues/11664 Deno.test(async function testImportArrayBufferKey() { const subtle = window.crypto.subtle; assert(subtle); // deno-fmt-ignore const key = new Uint8Array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]); const cryptoKey = await subtle.importKey( "raw", key.buffer, { name: "HMAC", hash: "SHA-1" }, true, ["sign"], ); assert(cryptoKey); // Test key usage await subtle.sign({ name: "HMAC" }, cryptoKey, new Uint8Array(8)); }); Deno.test(async function testSignVerify() { const subtle = window.crypto.subtle; assert(subtle); for (const algorithm of ["RSA-PSS", "RSASSA-PKCS1-v1_5"]) { for ( const hash of [ "SHA-1", "SHA-256", "SHA-384", "SHA-512", ] ) { const keyPair = await subtle.generateKey( { name: algorithm, modulusLength: 2048, publicExponent: new Uint8Array([1, 0, 1]), hash, }, true, ["sign", "verify"], ); const data = new Uint8Array([1, 2, 3]); const signAlgorithm = { name: algorithm, saltLength: 32 }; const signature = await subtle.sign( signAlgorithm, keyPair.privateKey, data, ); assert(signature); assert(signature.byteLength > 0); assert(signature.byteLength % 8 == 0); assert(signature instanceof ArrayBuffer); const verified = await subtle.verify( signAlgorithm, keyPair.publicKey, signature, data, ); assert(verified); } } }); // deno-fmt-ignore const plainText = new Uint8Array([95, 77, 186, 79, 50, 12, 12, 232, 118, 114, 90, 252, 229, 251, 210, 91, 248, 62, 90, 113, 37, 160, 140, 175, 231, 60, 62, 186, 196, 33, 119, 157, 249, 213, 93, 24, 12, 58, 233, 148, 38, 69, 225, 216, 47, 238, 140, 157, 41, 75, 60, 177, 160, 138, 153, 49, 32, 27, 60, 14, 129, 252, 71, 202, 207, 131, 21, 162, 175, 102, 50, 65, 19, 195, 182, 98, 48, 195, 70, 8, 196, 244, 89, 54, 52, 206, 2, 178, 103, 54, 34, 119, 240, 168, 64, 202, 116, 188, 61, 26, 98, 54, 149, 44, 94, 215, 170, 248, 168, 254, 203, 221, 250, 117, 132, 230, 151, 140, 234, 93, 42, 91, 159, 183, 241, 180, 140, 139, 11, 229, 138, 48, 82, 2, 117, 77, 131, 118, 16, 115, 116, 121, 60, 240, 38, 170, 238, 83, 0, 114, 125, 131, 108, 215, 30, 113, 179, 69, 221, 178, 228, 68, 70, 255, 197, 185, 1, 99, 84, 19, 137, 13, 145, 14, 163, 128, 152, 74, 144, 25, 16, 49, 50, 63, 22, 219, 204, 157, 107, 225, 104, 184, 72, 133, 56, 76, 160, 62, 18, 96, 10, 193, 194, 72, 2, 138, 243, 114, 108, 201, 52, 99, 136, 46, 168, 192, 42, 171]); // Passing const hashPlainTextVector = [ { hash: "SHA-1", plainText: plainText.slice(0, 214), }, { hash: "SHA-256", plainText: plainText.slice(0, 190), }, { hash: "SHA-384", plainText: plainText.slice(0, 158), }, { hash: "SHA-512", plainText: plainText.slice(0, 126), }, ]; Deno.test(async function testEncryptDecrypt() { const subtle = window.crypto.subtle; assert(subtle); for ( const { hash, plainText } of hashPlainTextVector ) { const keyPair = await subtle.generateKey( { name: "RSA-OAEP", modulusLength: 2048, publicExponent: new Uint8Array([1, 0, 1]), hash, }, true, ["encrypt", "decrypt"], ); const encryptAlgorithm = { name: "RSA-OAEP" }; const cipherText = await subtle.encrypt( encryptAlgorithm, keyPair.publicKey, plainText, ); assert(cipherText); assert(cipherText.byteLength > 0); assertEquals(cipherText.byteLength * 8, 2048); assert(cipherText instanceof ArrayBuffer); const decrypted = await subtle.decrypt( encryptAlgorithm, keyPair.privateKey, cipherText, ); assert(decrypted); assert(decrypted instanceof ArrayBuffer); assertEquals(new Uint8Array(decrypted), plainText); const badPlainText = new Uint8Array(plainText.byteLength + 1); badPlainText.set(plainText, 0); badPlainText.set(new Uint8Array([32]), plainText.byteLength); await assertRejects(async () => { // Should fail await subtle.encrypt( encryptAlgorithm, keyPair.publicKey, badPlainText, ); throw new TypeError("unreachable"); }, DOMException); } }); Deno.test(async function testGenerateRSAKey() { const subtle = window.crypto.subtle; assert(subtle); const keyPair = await subtle.generateKey( { name: "RSA-PSS", modulusLength: 2048, publicExponent: new Uint8Array([1, 0, 1]), hash: "SHA-256", }, true, ["sign", "verify"], ); assert(keyPair.privateKey); assert(keyPair.publicKey); assertEquals(keyPair.privateKey.extractable, true); assert(keyPair.privateKey.usages.includes("sign")); }); Deno.test(async function testGenerateHMACKey() { const key = await window.crypto.subtle.generateKey( { name: "HMAC", hash: "SHA-512", }, true, ["sign", "verify"], ); assert(key); assertEquals(key.extractable, true); assert(key.usages.includes("sign")); }); Deno.test(async function testECDSASignVerify() { const key = await window.crypto.subtle.generateKey( { name: "ECDSA", namedCurve: "P-384", }, true, ["sign", "verify"], ); const encoder = new TextEncoder(); const encoded = encoder.encode("Hello, World!"); const signature = await window.crypto.subtle.sign( { name: "ECDSA", hash: "SHA-384" }, key.privateKey, encoded, ); assert(signature); assert(signature instanceof ArrayBuffer); const verified = await window.crypto.subtle.verify( { hash: { name: "SHA-384" }, name: "ECDSA" }, key.publicKey, signature, encoded, ); assert(verified); }); // Tests the "bad paths" as a temporary replacement for sign_verify/ecdsa WPT. Deno.test(async function testECDSASignVerifyFail() { const key = await window.crypto.subtle.generateKey( { name: "ECDSA", namedCurve: "P-384", }, true, ["sign", "verify"], ); const encoded = new Uint8Array([1]); // Signing with a public key (InvalidAccessError) await assertRejects(async () => { await window.crypto.subtle.sign( { name: "ECDSA", hash: "SHA-384" }, key.publicKey, new Uint8Array([1]), ); throw new TypeError("unreachable"); }, DOMException); // Do a valid sign for later verifying. const signature = await window.crypto.subtle.sign( { name: "ECDSA", hash: "SHA-384" }, key.privateKey, encoded, ); // Verifying with a private key (InvalidAccessError) await assertRejects(async () => { await window.crypto.subtle.verify( { hash: { name: "SHA-384" }, name: "ECDSA" }, key.privateKey, signature, encoded, ); throw new TypeError("unreachable"); }, DOMException); }); // https://github.com/denoland/deno/issues/11313 Deno.test(async function testSignRSASSAKey() { const subtle = window.crypto.subtle; assert(subtle); const keyPair = await subtle.generateKey( { name: "RSASSA-PKCS1-v1_5", modulusLength: 2048, publicExponent: new Uint8Array([1, 0, 1]), hash: "SHA-256", }, true, ["sign", "verify"], ); assert(keyPair.privateKey); assert(keyPair.publicKey); assertEquals(keyPair.privateKey.extractable, true); assert(keyPair.privateKey.usages.includes("sign")); const encoder = new TextEncoder(); const encoded = encoder.encode("Hello, World!"); const signature = await window.crypto.subtle.sign( { name: "RSASSA-PKCS1-v1_5" }, keyPair.privateKey, encoded, ); assert(signature); }); // deno-fmt-ignore const rawKey = new Uint8Array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]); const jwk: JsonWebKey = { kty: "oct", // unpadded base64 for rawKey. k: "AQIDBAUGBwgJCgsMDQ4PEA", alg: "HS256", ext: true, "key_ops": ["sign"], }; Deno.test(async function subtleCryptoHmacImportExport() { const key1 = await crypto.subtle.importKey( "raw", rawKey, { name: "HMAC", hash: "SHA-256" }, true, ["sign"], ); const key2 = await crypto.subtle.importKey( "jwk", jwk, { name: "HMAC", hash: "SHA-256" }, true, ["sign"], ); const actual1 = await crypto.subtle.sign( { name: "HMAC" }, key1, new Uint8Array([1, 2, 3, 4]), ); const actual2 = await crypto.subtle.sign( { name: "HMAC" }, key2, new Uint8Array([1, 2, 3, 4]), ); // deno-fmt-ignore const expected = new Uint8Array([ 59, 170, 255, 216, 51, 141, 51, 194, 213, 48, 41, 191, 184, 40, 216, 47, 130, 165, 203, 26, 163, 43, 38, 71, 23, 122, 222, 1, 146, 46, 182, 87, ]); assertEquals( new Uint8Array(actual1), expected, ); assertEquals( new Uint8Array(actual2), expected, ); const exportedKey1 = await crypto.subtle.exportKey("raw", key1); assertEquals(new Uint8Array(exportedKey1), rawKey); const exportedKey2 = await crypto.subtle.exportKey("jwk", key2); assertEquals(exportedKey2, jwk); }); // https://github.com/denoland/deno/issues/12085 Deno.test(async function generateImportHmacJwk() { const key = await crypto.subtle.generateKey( { name: "HMAC", hash: "SHA-512", }, true, ["sign"], ); assert(key); assertEquals(key.type, "secret"); assertEquals(key.extractable, true); assertEquals(key.usages, ["sign"]); const exportedKey = await crypto.subtle.exportKey("jwk", key); assertEquals(exportedKey.kty, "oct"); assertEquals(exportedKey.alg, "HS512"); assertEquals(exportedKey.key_ops, ["sign"]); assertEquals(exportedKey.ext, true); assert(typeof exportedKey.k == "string"); assertEquals(exportedKey.k.length, 171); }); // 2048-bits publicExponent=65537 const pkcs8TestVectors = [ // rsaEncryption { pem: "cli/tests/testdata/webcrypto/id_rsaEncryption.pem", hash: "SHA-256" }, ]; Deno.test({ permissions: { read: true } }, async function importRsaPkcs8() { const pemHeader = "-----BEGIN PRIVATE KEY-----"; const pemFooter = "-----END PRIVATE KEY-----"; for (const { pem, hash } of pkcs8TestVectors) { const keyFile = await Deno.readTextFile(pem); const pemContents = keyFile.substring( pemHeader.length, keyFile.length - pemFooter.length, ); const binaryDerString = atob(pemContents); const binaryDer = new Uint8Array(binaryDerString.length); for (let i = 0; i < binaryDerString.length; i++) { binaryDer[i] = binaryDerString.charCodeAt(i); } const key = await crypto.subtle.importKey( "pkcs8", binaryDer, { name: "RSA-PSS", hash }, true, ["sign"], ); assert(key); assertEquals(key.type, "private"); assertEquals(key.extractable, true); assertEquals(key.usages, ["sign"]); const algorithm = key.algorithm as RsaHashedKeyAlgorithm; assertEquals(algorithm.name, "RSA-PSS"); assertEquals(algorithm.hash.name, hash); assertEquals(algorithm.modulusLength, 2048); assertEquals(algorithm.publicExponent, new Uint8Array([1, 0, 1])); } }); const nonInteroperableVectors = [ // id-RSASSA-PSS (sha256) // `openssl genpkey -algorithm rsa-pss -pkeyopt rsa_pss_keygen_md:sha256 -out id_rsassaPss.pem` { pem: "cli/tests/testdata/webcrypto/id_rsassaPss.pem", hash: "SHA-256" }, // id-RSASSA-PSS (default parameters) // `openssl genpkey -algorithm rsa-pss -out id_rsassaPss.pem` { pem: "cli/tests/testdata/webcrypto/id_rsassaPss_default.pem", hash: "SHA-1", }, // id-RSASSA-PSS (default hash) // `openssl genpkey -algorithm rsa-pss -pkeyopt rsa_pss_keygen_saltlen:30 -out rsaPss_saltLen_30.pem` { pem: "cli/tests/testdata/webcrypto/id_rsassaPss_saltLen_30.pem", hash: "SHA-1", }, ]; Deno.test( { permissions: { read: true } }, async function importNonInteroperableRsaPkcs8() { const pemHeader = "-----BEGIN PRIVATE KEY-----"; const pemFooter = "-----END PRIVATE KEY-----"; for (const { pem, hash } of nonInteroperableVectors) { const keyFile = await Deno.readTextFile(pem); const pemContents = keyFile.substring( pemHeader.length, keyFile.length - pemFooter.length, ); const binaryDerString = atob(pemContents); const binaryDer = new Uint8Array(binaryDerString.length); for (let i = 0; i < binaryDerString.length; i++) { binaryDer[i] = binaryDerString.charCodeAt(i); } await assertRejects( () => crypto.subtle.importKey( "pkcs8", binaryDer, { name: "RSA-PSS", hash }, true, ["sign"], ), DOMException, "unsupported algorithm", ); } }, ); // deno-fmt-ignore const asn1AlgorithmIdentifier = new Uint8Array([ 0x02, 0x01, 0x00, // INTEGER 0x30, 0x0d, // SEQUENCE (2 elements) 0x06, 0x09, // OBJECT IDENTIFIER 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x01, // 1.2.840.113549.1.1.1 (rsaEncryption) 0x05, 0x00, // NULL ]); Deno.test(async function rsaExport() { for (const algorithm of ["RSASSA-PKCS1-v1_5", "RSA-PSS", "RSA-OAEP"]) { const keyPair = await crypto.subtle.generateKey( { name: algorithm, modulusLength: 2048, publicExponent: new Uint8Array([1, 0, 1]), hash: "SHA-256", }, true, algorithm !== "RSA-OAEP" ? ["sign", "verify"] : ["encrypt", "decrypt"], ); assert(keyPair.privateKey); assert(keyPair.publicKey); assertEquals(keyPair.privateKey.extractable, true); const exportedPrivateKey = await crypto.subtle.exportKey( "pkcs8", keyPair.privateKey, ); assert(exportedPrivateKey); assert(exportedPrivateKey instanceof ArrayBuffer); const pkcs8 = new Uint8Array(exportedPrivateKey); assert(pkcs8.length > 0); assertEquals( pkcs8.slice(4, asn1AlgorithmIdentifier.byteLength + 4), asn1AlgorithmIdentifier, ); const exportedPublicKey = await crypto.subtle.exportKey( "spki", keyPair.publicKey, ); const spki = new Uint8Array(exportedPublicKey); assert(spki.length > 0); assertEquals( spki.slice(4, asn1AlgorithmIdentifier.byteLength + 1), asn1AlgorithmIdentifier.slice(3), ); } }); Deno.test(async function testHkdfDeriveBits() { const rawKey = crypto.getRandomValues(new Uint8Array(16)); const key = await crypto.subtle.importKey( "raw", rawKey, { name: "HKDF", hash: "SHA-256" }, false, ["deriveBits"], ); const salt = crypto.getRandomValues(new Uint8Array(16)); const info = crypto.getRandomValues(new Uint8Array(16)); const result = await crypto.subtle.deriveBits( { name: "HKDF", hash: "SHA-256", salt: salt, info: info, }, key, 128, ); assertEquals(result.byteLength, 128 / 8); }); Deno.test(async function testHkdfDeriveBitsWithLargeKeySize() { const key = await crypto.subtle.importKey( "raw", new Uint8Array([0x00]), "HKDF", false, ["deriveBits"], ); await assertRejects( () => crypto.subtle.deriveBits( { name: "HKDF", hash: "SHA-1", salt: new Uint8Array(), info: new Uint8Array(), }, key, ((20 * 255) << 3) + 8, ), DOMException, "The length provided for HKDF is too large", ); }); Deno.test(async function testEcdhDeriveBitsWithShorterLength() { const keypair = await crypto.subtle.generateKey( { name: "ECDH", namedCurve: "P-384", }, true, ["deriveBits", "deriveKey"], ); const result = await crypto.subtle.deriveBits( { name: "ECDH", public: keypair.publicKey, }, keypair.privateKey, 256, ); assertEquals(result.byteLength * 8, 256); }); Deno.test(async function testEcdhDeriveBitsWithLongerLength() { const keypair = await crypto.subtle.generateKey( { name: "ECDH", namedCurve: "P-384", }, true, ["deriveBits", "deriveKey"], ); await assertRejects( () => crypto.subtle.deriveBits( { name: "ECDH", public: keypair.publicKey, }, keypair.privateKey, 512, ), DOMException, "Invalid length", ); }); Deno.test(async function testEcdhDeriveBitsWithNullLength() { const keypair = await crypto.subtle.generateKey( { name: "ECDH", namedCurve: "P-384", }, true, ["deriveBits", "deriveKey"], ); const result = await crypto.subtle.deriveBits( { name: "ECDH", public: keypair.publicKey, }, keypair.privateKey, // @ts-ignore: necessary until .d.ts file allows passing null (see https://github.com/microsoft/TypeScript-DOM-lib-generator/pull/1416) null, ); assertEquals(result.byteLength * 8, 384); }); Deno.test(async function testDeriveKey() { // Test deriveKey const rawKey = crypto.getRandomValues(new Uint8Array(16)); const key = await crypto.subtle.importKey( "raw", rawKey, "PBKDF2", false, ["deriveKey", "deriveBits"], ); const salt = crypto.getRandomValues(new Uint8Array(16)); const derivedKey = await crypto.subtle.deriveKey( { name: "PBKDF2", salt, iterations: 1000, hash: "SHA-256", }, key, { name: "HMAC", hash: "SHA-256" }, true, ["sign"], ); assert(derivedKey instanceof CryptoKey); assertEquals(derivedKey.type, "secret"); assertEquals(derivedKey.extractable, true); assertEquals(derivedKey.usages, ["sign"]); const algorithm = derivedKey.algorithm as HmacKeyAlgorithm; assertEquals(algorithm.name, "HMAC"); assertEquals(algorithm.hash.name, "SHA-256"); assertEquals(algorithm.length, 512); }); Deno.test(async function testAesCbcEncryptDecrypt() { const key = await crypto.subtle.generateKey( { name: "AES-CBC", length: 128 }, true, ["encrypt", "decrypt"], ); const iv = crypto.getRandomValues(new Uint8Array(16)); const encrypted = await crypto.subtle.encrypt( { name: "AES-CBC", iv, }, key as CryptoKey, new Uint8Array([1, 2, 3, 4, 5, 6]), ); assert(encrypted instanceof ArrayBuffer); assertEquals(encrypted.byteLength, 16); const decrypted = await crypto.subtle.decrypt( { name: "AES-CBC", iv, }, key as CryptoKey, encrypted, ); assert(decrypted instanceof ArrayBuffer); assertEquals(decrypted.byteLength, 6); assertEquals(new Uint8Array(decrypted), new Uint8Array([1, 2, 3, 4, 5, 6])); }); Deno.test(async function testAesCtrEncryptDecrypt() { async function aesCtrRoundTrip( key: CryptoKey, counter: Uint8Array, length: number, plainText: Uint8Array, ) { const cipherText = await crypto.subtle.encrypt( { name: "AES-CTR", counter, length, }, key, plainText, ); assert(cipherText instanceof ArrayBuffer); assertEquals(cipherText.byteLength, plainText.byteLength); assertNotEquals(new Uint8Array(cipherText), plainText); const decryptedText = await crypto.subtle.decrypt( { name: "AES-CTR", counter, length, }, key, cipherText, ); assert(decryptedText instanceof ArrayBuffer); assertEquals(decryptedText.byteLength, plainText.byteLength); assertEquals(new Uint8Array(decryptedText), plainText); } for (const keySize of [128, 192, 256]) { const key = await crypto.subtle.generateKey( { name: "AES-CTR", length: keySize }, true, ["encrypt", "decrypt"], ) as CryptoKey; // test normal operation for (const length of [128 /*, 64, 128 */]) { const counter = crypto.getRandomValues(new Uint8Array(16)); await aesCtrRoundTrip( key, counter, length, new Uint8Array([1, 2, 3, 4, 5, 6]), ); } // test counter-wrapping for (const length of [32, 64, 128]) { const plaintext1 = crypto.getRandomValues(new Uint8Array(32)); const counter = new Uint8Array(16); // fixed upper part for (let off = 0; off < 16 - (length / 8); ++off) { counter[off] = off; } const ciphertext1 = await crypto.subtle.encrypt( { name: "AES-CTR", counter, length, }, key, plaintext1, ); // Set lower [length] counter bits to all '1's for (let off = 16 - (length / 8); off < 16; ++off) { counter[off] = 0xff; } // = [ 1 block of 0x00 + plaintext1 ] const plaintext2 = new Uint8Array(48); plaintext2.set(plaintext1, 16); const ciphertext2 = await crypto.subtle.encrypt( { name: "AES-CTR", counter, length, }, key, plaintext2, ); // If counter wrapped, 2nd block of ciphertext2 should be equal to 1st block of ciphertext1 // since ciphertext1 used counter = 0x00...00 // and ciphertext2 used counter = 0xFF..FF which should wrap to 0x00..00 without affecting // higher bits assertEquals( new Uint8Array(ciphertext1), new Uint8Array(ciphertext2).slice(16), ); } } }); Deno.test(async function testECDH() { for (const keySize of [256, 384]) { const keyPair = await crypto.subtle.generateKey( { name: "ECDH", namedCurve: "P-" + keySize, }, true, ["deriveBits"], ); const derivedKey = await crypto.subtle.deriveBits( { name: "ECDH", public: keyPair.publicKey, }, keyPair.privateKey, keySize, ); assert(derivedKey instanceof ArrayBuffer); assertEquals(derivedKey.byteLength, keySize / 8); } }); Deno.test(async function testWrapKey() { // Test wrapKey const key = await crypto.subtle.generateKey( { name: "RSA-OAEP", modulusLength: 4096, publicExponent: new Uint8Array([1, 0, 1]), hash: "SHA-256", }, true, ["wrapKey", "unwrapKey"], ); const hmacKey = await crypto.subtle.generateKey( { name: "HMAC", hash: "SHA-256", length: 128, }, true, ["sign"], ); const wrappedKey = await crypto.subtle.wrapKey( "raw", hmacKey, key.publicKey, { name: "RSA-OAEP", label: new Uint8Array(8), }, ); assert(wrappedKey instanceof ArrayBuffer); assertEquals(wrappedKey.byteLength, 512); }); // Doesn't need to cover all cases. // Only for testing types. Deno.test(async function testAesKeyGen() { const key = await crypto.subtle.generateKey( { name: "AES-GCM", length: 256, }, true, ["encrypt", "decrypt"], ); assert(key); assertEquals(key.type, "secret"); assertEquals(key.extractable, true); assertEquals(key.usages, ["encrypt", "decrypt"]); const algorithm = key.algorithm as AesKeyAlgorithm; assertEquals(algorithm.name, "AES-GCM"); assertEquals(algorithm.length, 256); }); Deno.test(async function testUnwrapKey() { const subtle = crypto.subtle; const AES_KEY: AesKeyAlgorithm & AesCbcParams = { name: "AES-CBC", length: 128, iv: new Uint8Array(16), }; const RSA_KEY: RsaHashedKeyGenParams & RsaOaepParams = { name: "RSA-OAEP", modulusLength: 2048, publicExponent: new Uint8Array([1, 0, 1]), hash: "SHA-1", }; const aesKey = await subtle.generateKey(AES_KEY, true, [ "encrypt", "decrypt", ]); const rsaKeyPair = await subtle.generateKey( { name: "RSA-OAEP", hash: "SHA-1", publicExponent: new Uint8Array([1, 0, 1]), modulusLength: 2048, }, false, ["wrapKey", "encrypt", "unwrapKey", "decrypt"], ); const enc = await subtle.wrapKey( "raw", aesKey, rsaKeyPair.publicKey, RSA_KEY, ); const unwrappedKey = await subtle.unwrapKey( "raw", enc, rsaKeyPair.privateKey, RSA_KEY, AES_KEY, false, ["encrypt", "decrypt"], ); assert(unwrappedKey instanceof CryptoKey); assertEquals(unwrappedKey.type, "secret"); assertEquals(unwrappedKey.extractable, false); assertEquals(unwrappedKey.usages, ["encrypt", "decrypt"]); }); Deno.test(async function testDecryptWithInvalidIntializationVector() { // deno-fmt-ignore const data = new Uint8Array([42,42,42,42,42,42,42,42,42,42,42,42,42,42,42]); const key = await crypto.subtle.importKey( "raw", new Uint8Array(16), { name: "AES-CBC", length: 256 }, true, ["encrypt", "decrypt"], ); // deno-fmt-ignore const initVector = new Uint8Array([0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]); const encrypted = await crypto.subtle.encrypt( { name: "AES-CBC", iv: initVector }, key, data, ); // deno-fmt-ignore const initVector2 = new Uint8Array([15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0]); await assertRejects(async () => { await crypto.subtle.decrypt( { name: "AES-CBC", iv: initVector2 }, key, encrypted, ); }, DOMException); }); const jwtRSAKeys = { "1024": { size: 1024, publicJWK: { kty: "RSA", n: "zZn4sRGfjQos56yL_Qy1R9NI-THMnFynn94g5RxA6wGrJh4BJT3x6I9x0IbpS3q-d4ORA6R2vuDMh8dDFRr9RDH6XY-gUScc9U5Jz3UA2KmVfsCbnUPvcAmMV_ENA7_TF0ivVjuIFodyDTx7EKHNVTrHHSlrbt7spbmcivs23Zc", e: "AQAB", }, privateJWK: { kty: "RSA", n: "zZn4sRGfjQos56yL_Qy1R9NI-THMnFynn94g5RxA6wGrJh4BJT3x6I9x0IbpS3q-d4ORA6R2vuDMh8dDFRr9RDH6XY-gUScc9U5Jz3UA2KmVfsCbnUPvcAmMV_ENA7_TF0ivVjuIFodyDTx7EKHNVTrHHSlrbt7spbmcivs23Zc", e: "AQAB", d: "YqIK_GdH85F-GWZdgfgmv15NE78gOaL5h2g4v7DeM9-JC7A5PHSLKNYn87HFGcC4vv0PBIBRtyCA_mJJfEaGWORVCOXSBpWNepMYpio52n3w5uj5UZEsBnbtZc0EtWhVF2Auqa7VbiKrWcQUEgEI8V0gE5D4tyBg8GXv9975dQE", p: "9BrAg5L1zfqGPuWJDuDCBX-TmtZdrOI3Ys4ZaN-yMPlTjwWSEPO0qnfjEZcw2VgXHgJJmbVco6TxckJCmEYqeQ", q: "157jDJ1Ya5nmQvTPbhKAPAeMWogxCyaQTkBrp30pEKd6mGSB385hqr4BIk8s3f7MdXpM-USpaZgUoT4o_2VEjw", dp: "qdd_QUzcaB-6jkKo1Ug-1xKIAgDLFsIjJUUfWt_iHL8ti2Kl2dOnTcCypgebPm5TT1bqHN-agGYAdK5zpX2UiQ", dq: "hNRfwOSplNfhLvxLUN7a2qA3yYm-1MSz_1DWQP7srlLORlUcYPht2FZmsnEeDcAqynBGPQUcbG2Av_hgHz2OZw", qi: "zbpJQAhinrxSbVKxBQ2EZGFUD2e3WCXbAJRYpk8HVQ5AA52OhKTicOye2hEHnrgpFKzC8iznTsCG3FMkvwcj4Q", }, }, "2048": { size: 2048, publicJWK: { kty: "RSA", // unpadded base64 for rawKey. n: "09eVwAhT9SPBxdEN-74BBeEANGaVGwqH-YglIc4VV7jfhR2by5ivzVq8NCeQ1_ACDIlTDY8CTMQ5E1c1SEXmo_T7q84XUGXf8U9mx6uRg46sV7fF-hkwJR80BFVsvWxp4ahPlVJYj__94ft7rIVvchb5tyalOjrYFCJoFnSgq-i3ZjU06csI9XnO5klINucD_Qq0vUhO23_Add2HSYoRjab8YiJJR_Eths7Pq6HHd2RSXmwYp5foRnwe0_U75XmesHWDJlJUHYbwCZo0kP9G8g4QbucwU-MSNBkZOO2x2ZtZNexpHd0ThkATbnNlpVG_z2AGNORp_Ve3rlXwrGIXXw", e: "AQAB", }, privateJWK: { kty: "RSA", // unpadded base64 for rawKey. n: "09eVwAhT9SPBxdEN-74BBeEANGaVGwqH-YglIc4VV7jfhR2by5ivzVq8NCeQ1_ACDIlTDY8CTMQ5E1c1SEXmo_T7q84XUGXf8U9mx6uRg46sV7fF-hkwJR80BFVsvWxp4ahPlVJYj__94ft7rIVvchb5tyalOjrYFCJoFnSgq-i3ZjU06csI9XnO5klINucD_Qq0vUhO23_Add2HSYoRjab8YiJJR_Eths7Pq6HHd2RSXmwYp5foRnwe0_U75XmesHWDJlJUHYbwCZo0kP9G8g4QbucwU-MSNBkZOO2x2ZtZNexpHd0ThkATbnNlpVG_z2AGNORp_Ve3rlXwrGIXXw", e: "AQAB", d: "H4xboN2co0VP9kXL71G8lUOM5EDis8Q9u8uqu_4U75t4rjpamVeD1vFMVfgOehokM_m_hKVnkkcmuNqj9L90ObaiRFPM5QxG7YkFpXbHlPAKeoXD1hsqMF0VQg_2wb8DhberInHA_rEA_kaVhHvavQLu7Xez45gf1d_J4I4931vjlCB6cupbLL0H5hHsxbMsX_5nnmAJdL_U3gD-U7ZdQheUPhDBJR2KeGzvnTm3KVKpOnwn-1Cd45MU4-KDdP0FcBVEuBsSrsQHliTaciBgkbyj__BangPj3edDxTkb-fKkEvhkXRjAoJs1ixt8nfSGDce9cM_GqAX9XGb4s2QkAQ", dp: "mM82RBwzGzi9LAqjGbi-badLtHRRBoH9sfMrJuOtzxRnmwBFccg_lwy-qAhUTqnN9kvD0H1FzXWzoFPFJbyi-AOmumYGpWm_PvzQGldne5CPJ02pYaeg-t1BePsT3OpIq0Am8E2Kjf9polpRJwIjO7Kx8UJKkhg5bISnsy0V8wE", dq: "ZlM4AvrWIpXwqsH_5Q-6BsLJdbnN_GypFCXoT9VXniXncSBZIWCkgDndBdWkSzyzIN65NiMRBfZaf9yduTFj4kvOPwb3ch3J0OxGJk0Ary4OGSlS1zNwMl93ALGal1FzpWUuiia9L9RraGqXAUr13L7TIIMRobRjpAV-z7M-ruM", p: "7VwGt_tJcAFQHrmDw5dM1EBru6fidM45NDv6VVOEbxKuD5Sh2EfAHfm5c6oouA1gZqwvKH0sn_XpB1NsyYyHEQd3sBVdK0zRjTo-E9mRP-1s-LMd5YDXVq6HE339nxpXsmO25slQEF6zBrj1bSNNXBFc7fgDnlq-HIeleMvsY_E", q: "5HqMHLzb4IgXhUl4pLz7E4kjY8PH2YGzaQfK805zJMbOXzmlZK0hizKo34Qqd2nB9xos7QgzOYQrNfSWheARwVsSQzAE0vGvw3zHIPP_lTtChBlCTPctQcURjw4dXcnK1oQ-IT321FNOW3EO-YTsyGcypJqJujlZrLbxYjOjQE8", qi: "OQXzi9gypDnpdHatIi0FaUGP8LSzfVH0AUugURJXs4BTJpvA9y4hcpBQLrcl7H_vq6kbGmvC49V-9I5HNVX_AuxGIXKuLZr5WOxPq8gLTqHV7X5ZJDtWIP_nq2NNgCQQyNNRrxebiWlwGK9GnX_unewT6jopI_oFhwp0Q13rBR0", }, }, "4096": { size: 4096, publicJWK: { kty: "RSA", n: "2qr2TL2c2JmbsN0OLIRnaAB_ZKb1-Gh9H0qb4lrBuDaqkW_eFPwT-JIsvnNJvDT7BLJ57tTMIj56ZMtv6efSSTWSk9MOoW2J1K_iEretZ2cegB_aRX7qQVjnoFsz9U02BKfAIUT0o_K7b9G08d1rrAUohi_SVQhwObodg7BddMbKUmz70QNIS487LN44WUVnn9OgE9atTYUARNukT0DuQb3J-K20ksTuVujXbSelohDmLobqlGoi5sY_548Qs9BtFmQ2nGuEHNB2zdlZ5EvEqbUFVZ2QboG6jXdoos6qcwdgUvAhj1Hz10Ngic_RFqL7bNDoIOzNp66hdA35uxbwuaygZ16ikxoPj7eTYud1hrkyQCgeGw2YhCiKIE6eos_U5dL7WHRD5aSkkzsgXtnF8pVmStsuf0QcdAoC-eeCex0tSTgRw9AtGTz8Yr1tGQD9l_580zAXnE6jmrwRRQ68EEA7vohGov3tnG8pGyg_zcxeADLtPlfTc1tEwmh3SGrioDClioYCipm1JvkweEgP9eMPpEC8SgRU1VNDSVe1SF4uNsH8vA7PHFKfg6juqJEc5ht-l10FYER-Qq6bZXsU2oNcfE5SLDeLTWmxiHmxK00M8ABMFIV5gUkPoMiWcl87O6XwzA2chsIERp7Vb-Vn2O-EELiXzv7lPhc6fTGQ0Nc", e: "AQAB", }, privateJWK: { kty: "RSA", n: "2qr2TL2c2JmbsN0OLIRnaAB_ZKb1-Gh9H0qb4lrBuDaqkW_eFPwT-JIsvnNJvDT7BLJ57tTMIj56ZMtv6efSSTWSk9MOoW2J1K_iEretZ2cegB_aRX7qQVjnoFsz9U02BKfAIUT0o_K7b9G08d1rrAUohi_SVQhwObodg7BddMbKUmz70QNIS487LN44WUVnn9OgE9atTYUARNukT0DuQb3J-K20ksTuVujXbSelohDmLobqlGoi5sY_548Qs9BtFmQ2nGuEHNB2zdlZ5EvEqbUFVZ2QboG6jXdoos6qcwdgUvAhj1Hz10Ngic_RFqL7bNDoIOzNp66hdA35uxbwuaygZ16ikxoPj7eTYud1hrkyQCgeGw2YhCiKIE6eos_U5dL7WHRD5aSkkzsgXtnF8pVmStsuf0QcdAoC-eeCex0tSTgRw9AtGTz8Yr1tGQD9l_580zAXnE6jmrwRRQ68EEA7vohGov3tnG8pGyg_zcxeADLtPlfTc1tEwmh3SGrioDClioYCipm1JvkweEgP9eMPpEC8SgRU1VNDSVe1SF4uNsH8vA7PHFKfg6juqJEc5ht-l10FYER-Qq6bZXsU2oNcfE5SLDeLTWmxiHmxK00M8ABMFIV5gUkPoMiWcl87O6XwzA2chsIERp7Vb-Vn2O-EELiXzv7lPhc6fTGQ0Nc", e: "AQAB", d: "uXPRXBhcE5-DWabBRKQuhxgU8ype5gTISWefeYP7U96ZHqu_sBByZ5ihdgyU9pgAZGVx4Ep9rnVKnH2lNr2zrP9Qhyqy99nM0aMxmypIWLAuP__DwLj4t99M4sU29c48CAq1egHfccSFjzpNuetOTCA71EJuokt70pm0OmGzgTyvjuR7VTLxd5PMXitBowSn8_cphmnFpT8tkTiuy8CH0R3DU7MOuINomDD1s8-yPBcVAVTPUnwJiauNuzestLQKMLlhT5wn-cAbYk36XRKdgkjSc2AkhHRl4WDqT1nzWYdh_DVIYSLiKSktkPO9ovMrRYiPtozfhl0m9SR9Ll0wXtcnnDlWXc_MSGpw18vmUBSJ4PIhkiFsvLn-db3wUkA8uve-iqqfk0sxlGWughWx03kGmZDmprWbXugCBHfsI4X93w4exznXH_tapxPnmjbhVUQR6p41MvO2lcHWPLwGJgLIoejBHpnn3TmMN0UjFZki7q9B_dJ3fXh0mX9DzAlC0sil1NgCPhMPq02393_giinQquMknrBvgKxGSfGUrDKuflCx611ZZlRM3R7YMX2OIy1g4DyhPzBVjxRMtm8PnIs3m3Hi-O-C_PHF93w9J8Wqd0yIw7SpavDqZXLPC6Cqi8K7MBZyVECXHtRj1bBqT-h_xZmFCDjSU0NqfOdgApE", p: "9NrXwq4kY9kBBOwLoFZVQc4kJI_NbKa_W9FLdQdRIbMsZZHXJ3XDUR9vJAcaaR75WwIC7X6N55nVtWTq28Bys9flJ9RrCTfciOntHEphBhYaL5ZTUl-6khYmsOf_psff2VaOOCvHGff5ejuOmBQxkw2E-cv7knRgWFHoLWpku2NJIMuGHt9ks7OAUfIZVYl9YJnw4FYUzhgaxemknjLeZ8XTkGW2zckzF-d95YI9i8zD80Umubsw-YxriSfqFQ0rGHBsbQ8ZOTd_KJju42BWnXIjNDYmjFUqdzVjI4XQ8EGrCEf_8_iwphGyXD7LOJ4fqd97B3bYpoRTPnCgY_SEHQ", q: "5J758_NeKr1XPZiLxXohYQQnh0Lb4QtGZ1xzCgjhBQLcIBeTOG_tYjCues9tmLt93LpJfypSJ-SjDLwkR2s069_IByYGpxyeGtV-ulqYhSw1nD2CXKMDGyO5jXDs9tJrS_UhfobXKQH03CRdFugyPkSNmXY-AafFynG7xLr7oYBC05FnhUXPm3VBTPt9K-BpqwYd_h9vkAWeprSPo83UlwcLMupSJY9LaHxhRdz2yi0ZKNwXXHRwcszGjDBvvzUcCYbqWqjzbEvFY6KtH8Jh4LhM46rHaoEOTernJsDF6a6W8Df88RthqTExcwnaQf0O_dlbjSxEIPfbxx8t1EQugw", dp: "4Y7Hu5tYAnLhMXuQqj9dgqU3PkcKYdCp7xc6f7Ah2P2JJHfYz4z4RD7Ez1eLyNKzulZ8A_PVHUjlSZiRkaYTBAEaJDrV70P6cFWuC6WpA0ZREQ1V7EgrQnANbGILa8QsPbYyhSQu4YlB1IwQq5_OmzyVBtgWA7AZIMMzMsMT0FuB_if-gWohBjmRN-vh0p45VUf6UW568-_YmgDFmMYbg1UFs7s_TwrNenPR0h7MO4CB8hP9vJLoZrooRczzIjljPbwy5bRG9CJfjTJ0vhj9MUT3kR1hHV1HJVGU5iBbfTfBKnvJGSI6-IDM4ZUm-B0R5hbs6s9cfOjhFmACIJIbMQ", dq: "gT4iPbfyHyVEwWyQb4X4grjvg7bXSKSwG1SXMDAOzV9tg7LwJjKYNy8gJAtJgNNVdsfVLs-E_Epzpoph1AIWO9YZZXkov6Yc9zyEVONMX9S7ReU74hTBd8E9b2lMfMg9ogYk9jtSPTt-6kigW4fOh4cHqZ6_tP3cgfLD3JZ8FDPHE4WaySvLDq49yUBO5dQKyIU_xV6OGhQjOUjP_yEoMmzn9tOittsIHTxbXTxqQ6c1FvU9O6YTv8Jl5_Cl66khfX1I1RG38xvurcHULyUbYgeuZ_Iuo9XreT73h9_owo9RguGT29XH4vcNZmRGf5GIvRb4e5lvtleIZkwJA3u78w", qi: "JHmVKb1zwW5iRR6RCeexYnh2fmY-3DrPSdM8Dxhr0F8dayi-tlRqEdnG0hvp45n8gLUskWWcB9EXlUJObZGKDfGuxgMa3g_xeLA2vmFQ12MxPsyH4iCNZvsgmGxx7TuOHrnDh5EBVnM4_de63crEJON2sYI8Ozi-xp2OEmAr2seWKq4sxkFni6exLhqb-NE4m9HMKlng1EtQh2rLBFG1VYD3SYYpMLc5fxzqGvSxn3Fa-Xgg-IZPY3ubrcm52KYgmLUGmnYStfVqGSWSdhDXHlNgI5pdAA0FzpyBk3ZX-JsxhwcnneKrYBBweq06kRMGWgvdbdAQ-7wSeGqqj5VPwA", }, }, }; Deno.test(async function testImportRsaJwk() { const subtle = window.crypto.subtle; assert(subtle); for (const [_key, jwkData] of Object.entries(jwtRSAKeys)) { const { size, publicJWK, privateJWK } = jwkData; if (size < 2048) { continue; } // 1. Test import PSS for (const hash of ["SHA-1", "SHA-256", "SHA-384", "SHA-512"]) { const hashMapPSS: Record = { "SHA-1": "PS1", "SHA-256": "PS256", "SHA-384": "PS384", "SHA-512": "PS512", }; if (size == 1024 && hash == "SHA-512") { continue; } const privateKeyPSS = await crypto.subtle.importKey( "jwk", { alg: hashMapPSS[hash], ...privateJWK, ext: true, "key_ops": ["sign"], }, { name: "RSA-PSS", hash }, true, ["sign"], ); const publicKeyPSS = await crypto.subtle.importKey( "jwk", { alg: hashMapPSS[hash], ...publicJWK, ext: true, "key_ops": ["verify"], }, { name: "RSA-PSS", hash }, true, ["verify"], ); const signaturePSS = await crypto.subtle.sign( { name: "RSA-PSS", saltLength: 32 }, privateKeyPSS, new Uint8Array([1, 2, 3, 4]), ); const verifyPSS = await crypto.subtle.verify( { name: "RSA-PSS", saltLength: 32 }, publicKeyPSS, signaturePSS, new Uint8Array([1, 2, 3, 4]), ); assert(verifyPSS); } // 2. Test import PKCS1 for (const hash of ["SHA-1", "SHA-256", "SHA-384", "SHA-512"]) { const hashMapPKCS1: Record = { "SHA-1": "RS1", "SHA-256": "RS256", "SHA-384": "RS384", "SHA-512": "RS512", }; if (size == 1024 && hash == "SHA-512") { continue; } const privateKeyPKCS1 = await crypto.subtle.importKey( "jwk", { alg: hashMapPKCS1[hash], ...privateJWK, ext: true, "key_ops": ["sign"], }, { name: "RSASSA-PKCS1-v1_5", hash }, true, ["sign"], ); const publicKeyPKCS1 = await crypto.subtle.importKey( "jwk", { alg: hashMapPKCS1[hash], ...publicJWK, ext: true, "key_ops": ["verify"], }, { name: "RSASSA-PKCS1-v1_5", hash }, true, ["verify"], ); const signaturePKCS1 = await crypto.subtle.sign( { name: "RSASSA-PKCS1-v1_5", saltLength: 32 }, privateKeyPKCS1, new Uint8Array([1, 2, 3, 4]), ); const verifyPKCS1 = await crypto.subtle.verify( { name: "RSASSA-PKCS1-v1_5", saltLength: 32 }, publicKeyPKCS1, signaturePKCS1, new Uint8Array([1, 2, 3, 4]), ); assert(verifyPKCS1); } // 3. Test import OAEP for ( const { hash, plainText } of hashPlainTextVector ) { const hashMapOAEP: Record = { "SHA-1": "RSA-OAEP", "SHA-256": "RSA-OAEP-256", "SHA-384": "RSA-OAEP-384", "SHA-512": "RSA-OAEP-512", }; if (size == 1024 && hash == "SHA-512") { continue; } const encryptAlgorithm = { name: "RSA-OAEP" }; const privateKeyOAEP = await crypto.subtle.importKey( "jwk", { alg: hashMapOAEP[hash], ...privateJWK, ext: true, "key_ops": ["decrypt"], }, { ...encryptAlgorithm, hash }, true, ["decrypt"], ); const publicKeyOAEP = await crypto.subtle.importKey( "jwk", { alg: hashMapOAEP[hash], ...publicJWK, ext: true, "key_ops": ["encrypt"], }, { ...encryptAlgorithm, hash }, true, ["encrypt"], ); const cipherText = await subtle.encrypt( encryptAlgorithm, publicKeyOAEP, plainText, ); assert(cipherText); assert(cipherText.byteLength > 0); assertEquals(cipherText.byteLength * 8, size); assert(cipherText instanceof ArrayBuffer); const decrypted = await subtle.decrypt( encryptAlgorithm, privateKeyOAEP, cipherText, ); assert(decrypted); assert(decrypted instanceof ArrayBuffer); assertEquals(new Uint8Array(decrypted), plainText); } } }); const jwtECKeys = { "256": { size: 256, algo: "ES256", publicJWK: { kty: "EC", crv: "P-256", x: "0hCwpvnZ8BKGgFi0P6T0cQGFQ7ugDJJQ35JXwqyuXdE", y: "zgN1UtSBRQzjm00QlXAbF1v6s0uObAmeGPHBmDWDYeg", }, privateJWK: { kty: "EC", crv: "P-256", x: "0hCwpvnZ8BKGgFi0P6T0cQGFQ7ugDJJQ35JXwqyuXdE", y: "zgN1UtSBRQzjm00QlXAbF1v6s0uObAmeGPHBmDWDYeg", d: "E9M6LVq_nPnrsh_4YNSu_m5W53eQ9N7ptAiE69M1ROo", }, }, "384": { size: 384, algo: "ES384", publicJWK: { kty: "EC", crv: "P-384", x: "IZwU1mYXs27G2IVrOFtzp000T9iude8EZDXdpU47RL1fvevR0I3Wni19wdwhjLQ1", y: "vSgTjMd4M3qEL2vWGyQOdCSfJGZ8KlgQp2v8KOAzX4imUB3sAZdtqFr7AIactqzo", }, privateJWK: { kty: "EC", crv: "P-384", x: "IZwU1mYXs27G2IVrOFtzp000T9iude8EZDXdpU47RL1fvevR0I3Wni19wdwhjLQ1", y: "vSgTjMd4M3qEL2vWGyQOdCSfJGZ8KlgQp2v8KOAzX4imUB3sAZdtqFr7AIactqzo", d: "RTe1mQeE08LSLpao-S-hqkku6HPldqQVguFEGDyYiNEOa560ztSyzEAS5KxeqEBz", }, }, }; type JWK = Record; function equalJwk(expected: JWK, got: JWK): boolean { const fields = Object.keys(expected); for (let i = 0; i < fields.length; i++) { const fieldName = fields[i]; if (!(fieldName in got)) { return false; } if (expected[fieldName] !== got[fieldName]) { return false; } } return true; } Deno.test(async function testImportExportEcDsaJwk() { const subtle = crypto.subtle; assert(subtle); for ( const [_key, keyData] of Object.entries(jwtECKeys) ) { const { publicJWK, privateJWK, algo } = keyData; // 1. Test import EcDsa const privateKeyECDSA = await subtle.importKey( "jwk", { alg: algo, ...privateJWK, ext: true, "key_ops": ["sign"], }, { name: "ECDSA", namedCurve: privateJWK.crv }, true, ["sign"], ); const expPrivateKeyJWK = await subtle.exportKey( "jwk", privateKeyECDSA, ); assert(equalJwk(privateJWK, expPrivateKeyJWK as JWK)); const publicKeyECDSA = await subtle.importKey( "jwk", { alg: algo, ...publicJWK, ext: true, "key_ops": ["verify"], }, { name: "ECDSA", namedCurve: publicJWK.crv }, true, ["verify"], ); const expPublicKeyJWK = await subtle.exportKey( "jwk", publicKeyECDSA, ); assert(equalJwk(publicJWK, expPublicKeyJWK as JWK)); const signatureECDSA = await subtle.sign( { name: "ECDSA", hash: `SHA-${keyData.size}` }, privateKeyECDSA, new Uint8Array([1, 2, 3, 4]), ); const verifyECDSA = await subtle.verify( { name: "ECDSA", hash: `SHA-${keyData.size}` }, publicKeyECDSA, signatureECDSA, new Uint8Array([1, 2, 3, 4]), ); assert(verifyECDSA); } }); Deno.test(async function testImportEcDhJwk() { const subtle = crypto.subtle; assert(subtle); for ( const [_key, jwkData] of Object.entries(jwtECKeys) ) { const { size, publicJWK, privateJWK } = jwkData; // 1. Test import EcDsa const privateKeyECDH = await subtle.importKey( "jwk", { ...privateJWK, ext: true, "key_ops": ["deriveBits"], }, { name: "ECDH", namedCurve: privateJWK.crv }, true, ["deriveBits"], ); const expPrivateKeyJWK = await subtle.exportKey( "jwk", privateKeyECDH, ); assert(equalJwk(privateJWK, expPrivateKeyJWK as JWK)); const publicKeyECDH = await subtle.importKey( "jwk", { ...publicJWK, ext: true, "key_ops": [], }, { name: "ECDH", namedCurve: publicJWK.crv }, true, [], ); const expPublicKeyJWK = await subtle.exportKey( "jwk", publicKeyECDH, ); assert(equalJwk(publicJWK, expPublicKeyJWK as JWK)); const derivedKey = await subtle.deriveBits( { name: "ECDH", public: publicKeyECDH, }, privateKeyECDH, size, ); assert(derivedKey instanceof ArrayBuffer); assertEquals(derivedKey.byteLength, size / 8); } }); const ecTestKeys = [ { size: 256, namedCurve: "P-256", signatureLength: 64, // deno-fmt-ignore raw: new Uint8Array([ 4, 210, 16, 176, 166, 249, 217, 240, 18, 134, 128, 88, 180, 63, 164, 244, 113, 1, 133, 67, 187, 160, 12, 146, 80, 223, 146, 87, 194, 172, 174, 93, 209, 206, 3, 117, 82, 212, 129, 69, 12, 227, 155, 77, 16, 149, 112, 27, 23, 91, 250, 179, 75, 142, 108, 9, 158, 24, 241, 193, 152, 53, 131, 97, 232, ]), // deno-fmt-ignore spki: new Uint8Array([ 48, 89, 48, 19, 6, 7, 42, 134, 72, 206, 61, 2, 1, 6, 8, 42, 134, 72, 206, 61, 3, 1, 7, 3, 66, 0, 4, 210, 16, 176, 166, 249, 217, 240, 18, 134, 128, 88, 180, 63, 164, 244, 113, 1, 133, 67, 187, 160, 12, 146, 80, 223, 146, 87, 194, 172, 174, 93, 209, 206, 3, 117, 82, 212, 129, 69, 12, 227, 155, 77, 16, 149, 112, 27, 23, 91, 250, 179, 75, 142, 108, 9, 158, 24, 241, 193, 152, 53, 131, 97, 232, ]), // deno-fmt-ignore pkcs8: new Uint8Array([ 48, 129, 135, 2, 1, 0, 48, 19, 6, 7, 42, 134, 72, 206, 61, 2, 1, 6, 8, 42, 134, 72, 206, 61, 3, 1, 7, 4, 109, 48, 107, 2, 1, 1, 4, 32, 19, 211, 58, 45, 90, 191, 156, 249, 235, 178, 31, 248, 96, 212, 174, 254, 110, 86, 231, 119, 144, 244, 222, 233, 180, 8, 132, 235, 211, 53, 68, 234, 161, 68, 3, 66, 0, 4, 210, 16, 176, 166, 249, 217, 240, 18, 134, 128, 88, 180, 63, 164, 244, 113, 1, 133, 67, 187, 160, 12, 146, 80, 223, 146, 87, 194, 172, 174, 93, 209, 206, 3, 117, 82, 212, 129, 69, 12, 227, 155, 77, 16, 149, 112, 27, 23, 91, 250, 179, 75, 142, 108, 9, 158, 24, 241, 193, 152, 53, 131, 97, 232, ]), }, { size: 384, namedCurve: "P-384", signatureLength: 96, // deno-fmt-ignore raw: new Uint8Array([ 4, 118, 64, 176, 165, 100, 177, 112, 49, 254, 58, 53, 158, 63, 73, 200, 148, 248, 242, 216, 186, 80, 92, 160, 53, 64, 232, 157, 19, 1, 12, 226, 115, 51, 42, 143, 98, 206, 55, 220, 108, 78, 24, 71, 157, 21, 120, 126, 104, 157, 86, 48, 226, 110, 96, 52, 48, 77, 170, 9, 231, 159, 26, 165, 200, 26, 164, 99, 46, 227, 169, 105, 172, 225, 60, 102, 141, 145, 139, 165, 47, 72, 53, 17, 17, 246, 161, 220, 26, 21, 23, 219, 1, 107, 185, 163, 215, ]), // deno-fmt-ignore spki: new Uint8Array([ 48, 118, 48, 16, 6, 7, 42, 134, 72, 206, 61, 2, 1, 6, 5, 43, 129, 4, 0, 34, 3, 98, 0, 4, 118, 64, 176, 165, 100, 177, 112, 49, 254, 58, 53, 158, 63, 73, 200, 148, 248, 242, 216, 186, 80, 92, 160, 53, 64, 232, 157, 19, 1, 12, 226, 115, 51, 42, 143, 98, 206, 55, 220, 108, 78, 24, 71, 157, 21, 120, 126, 104, 157, 86, 48, 226, 110, 96, 52, 48, 77, 170, 9, 231, 159, 26, 165, 200, 26, 164, 99, 46, 227, 169, 105, 172, 225, 60, 102, 141, 145, 139, 165, 47, 72, 53, 17, 17, 246, 161, 220, 26, 21, 23, 219, 1, 107, 185, 163, 215, ]), // deno-fmt-ignore pkcs8: new Uint8Array([ 48, 129, 182, 2, 1, 0, 48, 16, 6, 7, 42, 134, 72, 206, 61, 2, 1, 6, 5, 43, 129, 4, 0, 34, 4, 129, 158, 48, 129, 155, 2, 1, 1, 4, 48, 202, 7, 195, 169, 124, 170, 81, 169, 253, 127, 56, 28, 98, 90, 255, 165, 72, 142, 133, 138, 237, 200, 176, 92, 179, 192, 83, 28, 47, 118, 157, 152, 47, 65, 133, 140, 50, 83, 182, 191, 224, 96, 216, 179, 59, 150, 15, 233, 161, 100, 3, 98, 0, 4, 118, 64, 176, 165, 100, 177, 112, 49, 254, 58, 53, 158, 63, 73, 200, 148, 248, 242, 216, 186, 80, 92, 160, 53, 64, 232, 157, 19, 1, 12, 226, 115, 51, 42, 143, 98, 206, 55, 220, 108, 78, 24, 71, 157, 21, 120, 126, 104, 157, 86, 48, 226, 110, 96, 52, 48, 77, 170, 9, 231, 159, 26, 165, 200, 26, 164, 99, 46, 227, 169, 105, 172, 225, 60, 102, 141, 145, 139, 165, 47, 72, 53, 17, 17, 246, 161, 220, 26, 21, 23, 219, 1, 107, 185, 163, 215, ]), }, ]; Deno.test(async function testImportEcSpkiPkcs8() { const subtle = window.crypto.subtle; assert(subtle); for ( const { namedCurve, raw, spki, pkcs8, signatureLength } of ecTestKeys ) { const rawPublicKeyECDSA = await subtle.importKey( "raw", raw, { name: "ECDSA", namedCurve }, true, ["verify"], ); const expPublicKeyRaw = await subtle.exportKey( "raw", rawPublicKeyECDSA, ); assertEquals(new Uint8Array(expPublicKeyRaw), raw); const privateKeyECDSA = await subtle.importKey( "pkcs8", pkcs8, { name: "ECDSA", namedCurve }, true, ["sign"], ); const expPrivateKeyPKCS8 = await subtle.exportKey( "pkcs8", privateKeyECDSA, ); assertEquals(new Uint8Array(expPrivateKeyPKCS8), pkcs8); const expPrivateKeyJWK = await subtle.exportKey( "jwk", privateKeyECDSA, ); assertEquals(expPrivateKeyJWK.crv, namedCurve); const publicKeyECDSA = await subtle.importKey( "spki", spki, { name: "ECDSA", namedCurve }, true, ["verify"], ); const expPublicKeySPKI = await subtle.exportKey( "spki", publicKeyECDSA, ); assertEquals(new Uint8Array(expPublicKeySPKI), spki); const expPublicKeyJWK = await subtle.exportKey( "jwk", publicKeyECDSA, ); assertEquals(expPublicKeyJWK.crv, namedCurve); for ( const hash of ["SHA-1", "SHA-256", "SHA-384", "SHA-512"] ) { if ( (hash == "SHA-256" && namedCurve == "P-256") || (hash == "SHA-384" && namedCurve == "P-384") ) { const signatureECDSA = await subtle.sign( { name: "ECDSA", hash }, privateKeyECDSA, new Uint8Array([1, 2, 3, 4]), ); const verifyECDSA = await subtle.verify( { name: "ECDSA", hash }, publicKeyECDSA, signatureECDSA, new Uint8Array([1, 2, 3, 4]), ); assert(verifyECDSA); } else { await assertRejects( async () => { await subtle.sign( { name: "ECDSA", hash }, privateKeyECDSA, new Uint8Array([1, 2, 3, 4]), ); }, DOMException, "Not implemented", ); await assertRejects( async () => { await subtle.verify( { name: "ECDSA", hash }, publicKeyECDSA, new Uint8Array(signatureLength), new Uint8Array([1, 2, 3, 4]), ); }, DOMException, "Not implemented", ); } } } }); Deno.test(async function testAesGcmEncrypt() { const key = await crypto.subtle.importKey( "raw", new Uint8Array(16), { name: "AES-GCM", length: 256 }, true, ["encrypt", "decrypt"], ); const nonces = [{ iv: new Uint8Array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]), ciphertext: new Uint8Array([ 50, 223, 112, 178, 166, 156, 255, 110, 125, 138, 95, 141, 82, 47, 14, 164, 134, 247, 22, ]), }, { iv: new Uint8Array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]), ciphertext: new Uint8Array([ 210, 101, 81, 216, 151, 9, 192, 197, 62, 254, 28, 132, 89, 106, 40, 29, 175, 232, 201, ]), }]; for (const { iv, ciphertext: fixture } of nonces) { const data = new Uint8Array([1, 2, 3]); const cipherText = await crypto.subtle.encrypt( { name: "AES-GCM", iv }, key, data, ); assert(cipherText instanceof ArrayBuffer); assertEquals(cipherText.byteLength, 19); assertEquals( new Uint8Array(cipherText), fixture, ); const plainText = await crypto.subtle.decrypt( { name: "AES-GCM", iv }, key, cipherText, ); assert(plainText instanceof ArrayBuffer); assertEquals(plainText.byteLength, 3); assertEquals(new Uint8Array(plainText), data); } }); async function roundTripSecretJwk( jwk: JsonWebKey, algId: AlgorithmIdentifier | HmacImportParams, ops: KeyUsage[], validateKeys: ( key: CryptoKey, originalJwk: JsonWebKey, exportedJwk: JsonWebKey, ) => void, ) { const key = await crypto.subtle.importKey( "jwk", jwk, algId, true, ops, ); assert(key instanceof CryptoKey); assertEquals(key.type, "secret"); const exportedKey = await crypto.subtle.exportKey("jwk", key); validateKeys(key, jwk, exportedKey); } Deno.test(async function testSecretJwkBase64Url() { // Test 16bits with "overflow" in 3rd pos of 'quartet', no padding const keyData = `{ "kty": "oct", "k": "xxx", "alg": "HS512", "key_ops": ["sign", "verify"], "ext": true }`; await roundTripSecretJwk( JSON.parse(keyData), { name: "HMAC", hash: "SHA-512" }, ["sign", "verify"], (key, _orig, exp) => { assertEquals((key.algorithm as HmacKeyAlgorithm).length, 16); assertEquals(exp.k, "xxw"); }, ); // HMAC 128bits with base64url characters (-_) await roundTripSecretJwk( { kty: "oct", k: "HnZXRyDKn-_G5Fx4JWR1YA", alg: "HS256", "key_ops": ["sign", "verify"], ext: true, }, { name: "HMAC", hash: "SHA-256" }, ["sign", "verify"], (key, orig, exp) => { assertEquals((key.algorithm as HmacKeyAlgorithm).length, 128); assertEquals(orig.k, exp.k); }, ); // HMAC 104bits/(12+1) bytes with base64url characters (-_), padding and overflow in 2rd pos of "quartet" await roundTripSecretJwk( { kty: "oct", k: "a-_AlFa-2-OmEGa_-z==", alg: "HS384", "key_ops": ["sign", "verify"], ext: true, }, { name: "HMAC", hash: "SHA-384" }, ["sign", "verify"], (key, _orig, exp) => { assertEquals((key.algorithm as HmacKeyAlgorithm).length, 104); assertEquals("a-_AlFa-2-OmEGa_-w", exp.k); }, ); // AES-CBC 128bits with base64url characters (-_) no padding await roundTripSecretJwk( { kty: "oct", k: "_u3K_gEjRWf-7cr-ASNFZw", alg: "A128CBC", "key_ops": ["encrypt", "decrypt"], ext: true, }, { name: "AES-CBC" }, ["encrypt", "decrypt"], (_key, orig, exp) => { assertEquals(orig.k, exp.k); }, ); // AES-CBC 128bits of '1' with padding chars await roundTripSecretJwk( { kty: "oct", k: "_____________________w==", alg: "A128CBC", "key_ops": ["encrypt", "decrypt"], ext: true, }, { name: "AES-CBC" }, ["encrypt", "decrypt"], (_key, _orig, exp) => { assertEquals(exp.k, "_____________________w"); }, ); }); Deno.test(async function testAESWrapKey() { const key = await crypto.subtle.generateKey( { name: "AES-KW", length: 128, }, true, ["wrapKey", "unwrapKey"], ); const hmacKey = await crypto.subtle.generateKey( { name: "HMAC", hash: "SHA-256", length: 128, }, true, ["sign"], ); //round-trip // wrap-unwrap-export compare const wrappedKey = await crypto.subtle.wrapKey( "raw", hmacKey, key, { name: "AES-KW", }, ); assert(wrappedKey instanceof ArrayBuffer); assertEquals(wrappedKey.byteLength, 16 + 8); // 8 = 'auth tag' const unwrappedKey = await crypto.subtle.unwrapKey( "raw", wrappedKey, key, { name: "AES-KW", }, { name: "HMAC", hash: "SHA-256", }, true, ["sign"], ); assert(unwrappedKey instanceof CryptoKey); assertEquals((unwrappedKey.algorithm as HmacKeyAlgorithm).length, 128); const hmacKeyBytes = await crypto.subtle.exportKey("raw", hmacKey); const unwrappedKeyBytes = await crypto.subtle.exportKey("raw", unwrappedKey); assertEquals(new Uint8Array(hmacKeyBytes), new Uint8Array(unwrappedKeyBytes)); }); // https://github.com/denoland/deno/issues/13534 Deno.test(async function testAesGcmTagLength() { const key = await crypto.subtle.importKey( "raw", new Uint8Array(32), "AES-GCM", false, ["encrypt", "decrypt"], ); const iv = crypto.getRandomValues(new Uint8Array(12)); // encrypt won't fail, it will simply truncate the tag // as expected. const encrypted = await crypto.subtle.encrypt( { name: "AES-GCM", iv, tagLength: 96 }, key, new Uint8Array(32), ); await assertRejects(async () => { await crypto.subtle.decrypt( { name: "AES-GCM", iv, tagLength: 96 }, key, encrypted, ); }); }); Deno.test(async function ecPrivateKeyMaterialExportSpki() { // `generateKey` generates a key pair internally stored as "private" key. const keys = await crypto.subtle.generateKey( { name: "ECDSA", namedCurve: "P-256" }, true, ["sign", "verify"], ); assert(keys.privateKey instanceof CryptoKey); assert(keys.publicKey instanceof CryptoKey); // `exportKey` should be able to perform necessary conversion to export spki. const spki = await crypto.subtle.exportKey("spki", keys.publicKey); assert(spki instanceof ArrayBuffer); }); // https://github.com/denoland/deno/issues/13911 Deno.test(async function importJwkWithUse() { const jwk = { "kty": "EC", "use": "sig", "crv": "P-256", "x": "FWZ9rSkLt6Dx9E3pxLybhdM6xgR5obGsj5_pqmnz5J4", "y": "_n8G69C-A2Xl4xUW2lF0i8ZGZnk_KPYrhv4GbTGu5G4", }; const algorithm = { name: "ECDSA", namedCurve: "P-256" }; const key = await crypto.subtle.importKey( "jwk", jwk, algorithm, true, ["verify"], ); assert(key instanceof CryptoKey); }); // https://github.com/denoland/deno/issues/14215 Deno.test(async function exportKeyNotExtractable() { const key = await crypto.subtle.generateKey( { name: "HMAC", hash: "SHA-512", }, false, ["sign", "verify"], ); assert(key); assertEquals(key.extractable, false); await assertRejects(async () => { // Should fail await crypto.subtle.exportKey("raw", key); }, DOMException); }); // https://github.com/denoland/deno/issues/15126 Deno.test(async function testImportLeadingZeroesKey() { const alg = { name: "ECDSA", namedCurve: "P-256" }; const jwk = { kty: "EC", crv: "P-256", alg: "ES256", x: "EvidcdFB1xC6tgfakqZsU9aIURxAJkcX62zHe1Nt6xU", y: "AHsk6BioGM7MZWeXOE_49AGmtuaXFT3Ill3DYtz9uYg", d: "WDeYo4o1heCF9l_2VIaClRyIeO16zsMlN8UG6Le9dU8", "key_ops": ["sign"], ext: true, }; const key = await crypto.subtle.importKey( "jwk", jwk, alg, true, ["sign"], ); assert(key instanceof CryptoKey); assertEquals(key.type, "private"); }); // https://github.com/denoland/deno/issues/15523 Deno.test(async function testECspkiRoundTrip() { const alg = { name: "ECDH", namedCurve: "P-256" }; const { publicKey } = await crypto.subtle.generateKey(alg, true, [ "deriveBits", ]); const spki = await crypto.subtle.exportKey("spki", publicKey); await crypto.subtle.importKey("spki", spki, alg, true, []); }); Deno.test(async function testHmacJwkImport() { await crypto.subtle.importKey( "jwk", { kty: "oct", use: "sig", alg: "HS256", k: "hJtXIZ2uSN5kbQfbtTNWbpdmhkV8FJG-Onbc6mxCcYg", }, { name: "HMAC", hash: "SHA-256" }, false, ["sign", "verify"], ); }); Deno.test(async function p521Import() { const jwk = { "crv": "P-521", "ext": true, "key_ops": [ "verify", ], "kty": "EC", "x": "AXkSI8nfkc6bu3fifXGuKKbu08g5LKPfxUNQJJYzzPgmN8XLDzx0C9Sdeejl1XoWGrheKPHl0k4tUmHw0cdInpfj", "y": "AT4vjsO0bzVRlN3Wthv9DewncDXS2tlTob5QojV8WX1GzOAikRfWFEP3nspoSv88U447acZAsk5IvgGJuVjgMDlx", }; const algorithm = { name: "ECDSA", namedCurve: "P-521" }; const key = await crypto.subtle.importKey( "jwk", jwk, algorithm, true, ["verify"], ); assert(key instanceof CryptoKey); }); Deno.test(async function p521Generate() { const algorithm = { name: "ECDSA", namedCurve: "P-521" }; const key = await crypto.subtle.generateKey( algorithm, true, ["sign", "verify"], ); assert(key.privateKey instanceof CryptoKey); assert(key.publicKey instanceof CryptoKey); });