This commit adds associated type to "NodeEnv" trait, called "Fs".
The "Fs" type has a trait bound on "NodeFs", which specifies APIs
required for all ops and resolution APIs to function.
A "RealFs" implementation of "NodeFs" is exported from the "deno_node"
crate, that provides a default implementation for the trait.
All code in "deno_node" extension was changed to use the "NodeFs" trait
to handle file system operations, instead of relying on APIs from the
standard library.
Creating the node_modules folder when the packages are already
downloaded can take a bit of time and not knowing what is going on can
be confusing. It's better to show a progress bar.
This has been bothering me for a while and it became more painful while
working on #18136 because injecting the shared progress bar became very
verbose. Basically we should move the creation of all these npm structs
up to a higher level.
This is a stepping stone for a future refactor where we can improve how
we create all our structs.
This improves peer dependency resolution yet again. We did not handle
scenarios like the following:
```
// a -> b -> c -> d -> c -> b (peer)
```
...which would maybe work ok the first time its run in some cases, but
then lead to a lockfile that would error on load.
This now keeps track of circular dependencies and updates nodes
accordingly. That said, there is still a lurking bug in this code
somewhere that I've added a comment for (there is a mitigation on the
tail end that seems to work well). The current state is much better than
before and I can look into it later. I think it's something small that's
incorrect.
This is implemented in such a way that it should still allow processes
to go through when a file lock wasn't properly cleaned up and the OS
hasn't released it yet (but with a 200ms-ish delay).
Closes#18039
This lazily does an "npm install" when any package name matches what's
found in the package.json or when running a script from package.json
with deno task.
Part of #17916Closes#17928
This is a super basic initial implementation. We don't create a
`node_modules/.bin` folder at the moment and add it to the PATH like we
should which is necessary to make command name resolution in the
subprocess work properly (ex. you run a script that launches another
script that then tries to launch an "npx command"... this won't work
atm).
Closes#17492
This changes npm specifiers to be handled by deno_graph and resolved to
an npm package name and version when the specifier is encountered. It
also slightly changes how npm specifier resolution occurs—previously it
would collect all the npm specifiers and resolve them all at once, but
now it resolves them on the fly as they are encountered in the module
graph.
https://github.com/denoland/deno_graph/pull/232
---------
Co-authored-by: Bartek Iwańczuk <biwanczuk@gmail.com>
This PR fixes peer dependency resolution to only resolve peers based on
the current graph traversal path. Previously, it would resolve a peers
by looking at a graph node's ancestors, which is not correct because
graph nodes are shared by different resolutions.
It also stores more information about peer dependency resolution in the
lockfile.
This commits adds auto-discovery of "package.json" file when running
"deno run" and "deno task" subcommands. In case of "deno run" the
"package.json" is being looked up starting from the directory of the
script that is being run, stopping early if "deno.json(c)" file is found
(ie. FS tree won't be traversed "up" from "deno.json").
When "package.json" is discovered the "--node-modules-dir" flag is
implied, leading to creation of local "node_modules/" directory - we
did that, because most tools relying on "package.json" will expect
"node_modules/" directory to be present (eg. Vite). Additionally
"dependencies" and "devDependencies" specified in the "package.json"
are downloaded on startup.
This is a stepping stone to supporting bare specifier imports, but
the actual integration will be done in a follow up commit.
---------
Co-authored-by: David Sherret <dsherret@gmail.com>
The `NpmPackageId` struct is being renamed to `NpmPackageNodeId`. In a
future PR it will be moved down into only npm dependency resolution and
a `NpmPackageId` struct will be introduced in `deno_graph` that only has
the name and version of the package (no peer dependency identifier
information). So a `NpmPackageReq` will map to an `NpmPackageId`, which
will map to an `NpmPackageNodeId` in the npm resolution.
- Generalizes the npm version code (ex. `NpmVersion` -> `Version`,
`NpmVersionReq` -> `VersionReq`). This is a slow refactor towards
extracting out this code for deno specifiers and better usage in
deno_graph.
- Removes `SpecifierVersionReq`. Consolidates `NpmVersionReq` and
`SpecifierVersionReq` to just `VersionReq`
- Removes `NpmVersionMatcher`. This now just looks at `VersionReq`.
- Paves the way to allow us to create `NpmPackageReference`'s from a
package.json's dependencies/dev dependencies
(`VersionReq::parse_from_npm`).
I'm not sure this properly handles scenarios where an npm package uses
an alias that resolves to itself, we can fix that if we find a package
that actually depends on that behavior.
Closes#17420
This commit changes signature of "deno_core::ModuleLoader::resolve" to pass
an enum indicating whether or not we're resolving a specifier for dynamic import.
Additionally "CliModuleLoader" was changes to store both "parent permissions" (or
"root permissions") as well as "dynamic permissions" that allow to check for permissions
in top-level module load an dynamic imports.
Then all code paths that have anything to do with Node/npm compat are now checking
for permissions which are passed from module loader instance associated with given
worker.
If an optional peer dependency entry previously wasn't resolved and it's
now being resolved, then it will add it as if it were a dependency of
the previously resolved package instead of creating a new "copy package"
(seems to be what npm and pnpm does).
Closes#17240